Параллельное формирование предобуславливателя на основе обращения Шермана-Моррисона^{*}

Н.С. Недожогин, С.П. Копысов, А.К. Новиков

Институт механики УрО РАН

Исследуются возможности ускорения предобусловленных итерационных методов бисопряженных градиентов (BiCGStab) с предобуславливателем на основе разложения матрицы по формуле Шермана-Моррисона. Рассмотрена эффективность распараллеливания наиболее ресурсоёмких операций данного предобуславливателя на многоядерных центральных процессорах и графических процессорах.

1. Введение

Построение эффективных методов решения больших систем линейных алгебраических уравнений на основе предобусловленных итерационных методов, особенно в контексте параллельных вычислений, является достаточно трудной задачей. Матрица предобуславливатель не только должна быть в определенном смысле близка к обратной матрице коэффициентов системы, но и должна допускать эффективно распараллеливаемый алгоритм ее формирования и умножения на вектор.

К широко используемым сегодня можно отнести методы, ориентированные на разреженные матрицы и основанные на неполном разложении на треугольные составляющие, такие как метод неполного LU-разложения и метод неполного разложения Холецкого [1]. Имея высокую эффективность и популярность данные алгоритмы сталкиваются с известными проблемами при их параллельной реализации.

Высокий потенциал распараллеливания имеют предобуславливатели на основе аппроксимации обратной матрицы: полиномиальные (TNS [1] и др.), разреженные аппроксимации обратной матрицы (например, AINV), аппроксимации обратной матрицы в факторизованной форме (такие как FSAI, SPAI и др.) [2], а также метод AISM, основанный на обращении матриц Шермана-Моррисона (Sherman-Morrison formula) [3].

В работе ставятся следующие задачи: разработка методов параллельного построения предобуславливателей AISM; реализация и практическая оценка параллельной эффективности предложенных методов для гибридных вычислительных систем.

2. Предобуславливатель AISM

Рассмотрим предобуславливатель, основанный на обращении матриц методом Шермана-Моррисона. Параллельные свойства алгоритма обращения оказались достаточно хорошими, как и ожидалось из теоретических построений [4]. В настоящей работе исследуется техника предобусловливания задачи, предложенная в [5], схема которой изложена далее.

За основу построения A^{-1} возьмем матрицу B той же размерности, что и A, но с известной обратной матрицей.

Теорема [3]. Пусть B — невырожденная матрица и вектора u и v такие, что $r = 1 + v^T B^{-1} u \neq 0$, матрица $A = B + uv^T$ является обратимой и её обращение находится как

$$A^{-1} = B^{-1} - r^{-1}B^{-1}uv^T B^{-1}.$$
(1)

Обозначим u_k , v_k и A_0 — невырожденная матрица, обращение которой просто вычисляется (т.е. A_0 может быть диагональной или даже единичной матрицей). Тогда $A_k = A_0 + \sum_{i=1}^k u_i v_i^T$, где k = 1, n и $A = A_n$. Если A_k, u_k, v_k удовлетворяют выражению (1), тогда

^{*}Работа выполнена при поддержке РФФИ (проекты 14-01-00055-а, 14-01-31066-мол а)

обращение матрицы A может быть вычислено при n-кратном использованием (1)

$$A^{-1} = A_0^{-1} - \sum_{k=1}^{n} r_k^{-1} A_{k-1}^{-1} u_k v_k^T A_{k-1}^{-1}.$$
 (2)

Представим (2) в матричной форме

$$A_0^{-1} - A^{-1} = \Phi \Omega^{-1} \Psi^T, \tag{3}$$

где $\Phi = [A_0^{-1}u_1, A_1^{-1}u_2, \dots, A_{n-1}^{-1}u_n], \Psi = [v_1^T A_0^{-1}, u_2^T A_1^{-1}, \dots, v_n^T A_{n-1}^{-1}]$ и $\Omega^{-1} = diag[r_1^{-1}, r_2^{-1}, \dots, r_n^{-1}]$. Покажем, что факторизация (3) записывается без явного вычисления A_k^{-1} через вектора u_k, v_k как

$$s_k = u_k - \sum_{i=0}^{k-1} \frac{t_i^T A_0^{-1} u_k}{r_i} s_i, \quad t_k = v_k - \sum_{i=0}^{k-1} \frac{v_k^T A_0^{-1} s_i}{r_i} t_i, \quad k = 1, \dots, n.$$
(4)

Тогда выполняются соотношения

$$A_{k-1}^{-1}u_k = A_0^{-1}s_k, \quad u_k^T A_{k-1}^{-1} = t_k^T A_0^{-1},$$
(5)

$$r_k = 1 + v_k^T A_0^{-1} s_k = 1 + t_k^T A_0^{-1} u_k.$$
(6)

С учетом (5) соотношение (3) запишем в виде

$$A_0^{-1} - A^{-1} = A_0^{-1} S \Omega^{-1} T^T A_0^{-1}, (7)$$

где матрицы $S = [s_1, s_2, \ldots, s_n], T = [t_1, t_2, \ldots, t_n]$ столбцы которых вычисляются по u_k, v_k . Выбор A_0, u_k, v_k следующим образом [5]

$$A_0 = gI_n, \quad u_k = e_k, \quad v_k = (a^k - a_o^k)^T, \quad k = 1, \dots, n_k$$

где I_n, e_k — единичная матрица и ее k- столбец, векторы a^k, a_0^k — k-ая строка матриц A, A_0 . Тогда аппроксимация обратной матрицы и соответствующий предобуславливатель примут вид

$$P_1 = A^{-1} = gI_n - g^{-2}U\Omega^{-1}V^T.$$

Рассмотрим вариант когда матрица представима в виде разложения A = W - Z, где W — обратимая матрица, $Z = UV^T = \sum_{k=1}^n u_k v_k^T$, а v_k , u_k такие, что $d_k = 1 - v_k^T W_{k-1}^{-1} u_k \neq 0$, где $W_k = W_0 - \sum_{i=1}^k u_u v_i^T$. Задавая выбор матриц $W = \beta \cdot diag(A)$, $\beta > 0$, U = I, $V = Z^T$ и следуя соотношениям (4), (5) и (7), получим выражения для вычисления столбцов матриц S и T

$$s_k = u_k - \sum_{i=1}^{k-1} \frac{t_i^T W^{-1} u_k}{d_i} s_i, \quad t_k = v_k - \sum_{i=1}^{k-1} \frac{v_k^T W^{-1} s_i}{d_i} t_i$$

и обратной матрицы в виде

$$A^{-1} = W^{-1} - W^{-1}SD^{-1}T^{T}W^{-1}.$$
(8)

Используя стратегию фильтрации по значениям элементов (оставляем элементы значения которых больше некоторой величины τ) при вычислении матриц S, T и основываясь на (8) выпишем предобуславливатель, аппроксимирующий обратную матрицу в виде

$$P = W^{-1} - W^{-1} \tilde{S} D^{-1} \tilde{T}^T W^{-1}.$$
(9)

Последовательный процесс формирования рассматриваемого предобуславливателя представлен в виде алгоритма 1.

Алгоритм	1	Построение	предобуславливателя А	AISM
----------	---	------------	-----------------------	------

1: A	4 = W - Z	15: end for
2: V	$W = \beta \cdot diag(A); Z = W - A$	16: for $j = 1$ to n do
3: U	$U = I; V = Z^T$	17: if $ (s_k)_j < au_u$ then
4: f	for $k = 1$ to n do	$18: \qquad (s_k)_j = 0$
5:	$s_k = u_k, t_k = v_k$	19: end if
6:	for $i = 1$ to $k - 1$ do	20: if $ (t_k)_j < \tau_v$ then
7:	$\delta = (t_i^T W^{-1}, u_k)$	$21: (t_k)_j = 0$
8:	$ ext{if } rac{\delta}{d_i} > au_u ext{ then }$	22: end if
9:	$s_k = u_k - \frac{\delta}{d_i} \cdot s_i$	23: end for
10:	end if u_i	24: $d_k = 1 - (t_k^T W^{-1}, u_k)$
11:	$\delta = (v_k^T W^{-1}, s_i)$	25: end for
12:	if $\left \frac{\delta}{d_i}\right > \tau_v$ then	26: $S = \{s_1, s_2, \dots, s_n\}, T = \{t_1, t_2, \dots, t_n\}$
13:	$t_k = v_k - \frac{\delta}{d} \cdot t_i$	27: $D = \{d_1, d_2, \dots, d_n\}$
14:	end if u_i	28: $P = W^{-1} - W^{-1}SD^{-1}T^{T}W^{-1}$

3. Параллельное построение предобуславливателя

Рассмотрим процесс построения предобуславливателя в модели параллелизма по данным, которая присуща алгоритму 1 и связана с вычислением скалярных и матрично-векторных, матричных произведений.

В алгоритме 2 при формировании предобуславливателя для GPU, для замены скалярных произведений внутри цикла (шаг 7 алгоритма 1) введём матрицы $S_k = \{s_1, ..., s_{k-1}\}$ и $T_k = \{t_1, ..., t_{k-1}\}$. Тогда k - 1 скалярных произведений заменяется на матрично-векторные произведения, которые представлены на шагах 6 и 12 алгоритма 2. Здесь x — вектор, результат матрично-векторного произведения, а x_i — компоненты этого вектора. Для вычислений на графических ускорителях оставшегося скалярного произведения векторов на шаге 26 использовалась функция cublasSdot. Остальные векторные операции были реализованы с помощью ядер (kernel) CUDA собственной разработки.

Алоритм 2 формирование предобуславливателя набит на ст е				
A = W - Z	16:	end if		
$W = \beta \cdot diag(A); Z = W - A$	17:	end for		
$U = I; V = Z^T$	18:	for $j = 1$ to n do		
for $k = 1$ to n do	19:	$\mathbf{if} \left (s_k)_j \right < \tau_u \mathbf{then}$		
$s_k = u_k, t_k = v_k$	20:	$(s_k)_j = 0$		
$x = u_k T_k^T W^{-1}$	21:	end if		
for $i = 1$ to $k - 1$ do	22:	$\mathbf{if} \left (t_k)_j \right < \tau_v \mathbf{then}$		
$ ext{if } rac{x_i}{d_i} > au_u ext{ then }$	23:	$(t_k)_j = 0$		
$s_k = u_k - rac{x_i}{d_i} \cdot s_i$	24:	end if		
end if	25:	end for		
end for	26:	$d_k = 1 - (t_k^T W^{-1}, u_k)$		
$x = v_k^T S_k W^{-1}$	27: e	end for		
for $i = 1$ to $k - 1$ do	28: 2	$\tilde{S} = \{s_1, s_2, \dots, s_n\}, \tilde{T} = \{t_1, t_2, \dots, t_n\}$		
$ ext{if } rac{x_i}{d_i} > au_v ext{ then }$	29: I	$D = \{d_1, d_2, \dots, d_n\}$		
$t_k^{\sim} = v_k - rac{x_i}{d_i} \cdot t_i$	30: I	$P = W^{-1} - W^{-1}\tilde{S}D^{-1}\tilde{T}^{T}W^{-1}$		
	$\begin{aligned} A &= W - Z \\ W &= \beta \cdot diag(A); Z = W - A \\ U &= I; V = Z^T \\ \text{for } k = 1 \text{ to } n \text{ do} \\ s_k &= u_k, t_k = v_k \\ x &= u_k T_k^T W^{-1} \\ \text{for } i &= 1 \text{ to } k - 1 \text{ do} \\ &\text{ if } \frac{x_i}{d_i} > \tau_u \text{ then} \\ s_k &= u_k - \frac{x_i}{d_i} \cdot s_i \\ &\text{ end if} \\ end \text{ for} \\ x &= v_k^T S_k W^{-1} \\ \text{for } i &= 1 \text{ to } k - 1 \text{ do} \\ &\text{ if } \frac{x_i}{d_i} > \tau_v \text{ then} \\ t_k &= v_k - \frac{x_i}{d_i} \cdot t_i \end{aligned}$	$\begin{aligned} A &= W - Z & 16; \\ W &= \beta \cdot diag(A); Z &= W - A & 17; \\ U &= I; V &= Z^T & 18; \\ \text{for } k &= 1 \text{ to } n \text{ do} & 19; \\ s_k &= u_k, t_k &= v_k & 20; \\ x &= u_k T_k^T W^{-1} & 21; \\ \text{for } i &= 1 \text{ to } k - 1 \text{ do} & 22; \\ \text{ if } \frac{x_i}{d_i} &> \tau_u \text{ then} & 23; \\ s_k &= u_k - \frac{x_i}{d_i} \cdot s_i & 24; \\ \text{ end if} & 25; \\ \text{end for} & 26; \\ x &= v_k^T S_k W^{-1} & 27; \text{ end} \\ \text{for } i &= 1 \text{ to } k - 1 \text{ do} & 28; S_k & 26; \\ if \frac{x_i}{d_i} &> \tau_v \text{ then} & 29; I_k & 16; \\ \text{if } \frac{x_i}{d_i} &> \tau_v \text{ then} & 29; I_k & 16; \\ \end{array}$		

Алгоритм 2 Формирование предобуславливателя AISM на GPU

В рамках одной итерации цикла Алгоритма 2, при вычислении векторов s_k и t_k , не возникает ситуации блокировки памяти, что позволяет выполнять операции матрично-

векторного и скалярных произведений (шаги 6, 12) независимо в параллельных нитях OpenMP. Однако, такой подход требует больших затрат при реализации для multiGPU варианта, так как каждая последующая итерация цикла зависит от данных, полученных на предыдущем шаге, и требуется производить обмен s_k и t_k между памятью различных GPU.

Матрица	A(n/nnz)	Cond(A)	P_{AISM}	
			OpenMP	GPU
nasa2910	2910 / 174296	$9.53\cdot 10^{64}$	1.67	38.3
bcsstk15	$3948\ /\ 117816$	$6.64\cdot 10^9$	1.81	36.2
Kuu	$7102\ /\ 340200$	$15.75\cdot 10^3$	1.61	32.1
msc10848	$10848\ /\ 1229778$	$9.97\cdot 10^7$	1.88	32.1
vibrobox	$12328\ /\ 301700$	$1.04\cdot 10^{19}$	1.7	22.9
cdde5	$961/\ 4681$	$1.64\cdot 10^4$	1.64	19.9
ex37	$3565\ /\ 67591$	$1.79\cdot 10^2$	1.7	30.1
rajat03	$7602 \ / \ 32653$	$1.26\cdot 10^7$	1.67	23.8
flowmeter5	$9669 \ / \ 67391$	$7.1\cdot 10^6$	1.7	23.6
ex19	$12005\ /\ 259577$	$2.15\cdot 10^{12}$	1.7	21.9
sme3Da	$12504\ /874887$	$5.22\cdot 10^7$	3.5	40.4
poisson3Da	$13514\ /\ 352762$	$1.12 \cdot 10^3$	1.65	20.9

Таблица 1. Ускорение при формировании предобуславливателя *P*_{AISM}

Кроме этого, для сравнения все операции над векторами (инициализация, умножение вектора на скаляр, сложение векторов) были реализованы также в модели общей памяти OpenMP с помощью #pragma omp for.

Последний шаг Алгоритма 2, содержащий матричные операции (умножение, сложение) был так же распараллелен как в рамках технологии CUDA, так и OpenMP. При использовании CUDA, было реализовано ядро, представляющее матрично-матричное произведение в виде последовательных матрично-векторных произведений.

При построении предобуславливателя P_{AISM} разреженность матрицы неизвестна. Промежуточные вычисления на этапе формирования выполнялись над векторами s_k, t_k , являющиеся столбцами матриц S,T, хранящихся по строкам. Расходы по памяти увеличивались, но сокращалось время обращения к элементам векторов. Для преобразования из сжатого формата хранения матриц CSR в формат хранения полных строк (этап построения предобуславливателя) и обратное преобразование (матрично-векторное произведение при решении СЛАУ) были разработаны эффективные параллельные алгоритмы, позволяющие пренебречь затратами на преобразование матриц. Затраты по памяти при хранении матриц S, Tи P составляют $18 * n^2$ байт для варианта с двойной точностью и $12 * n^2$ — с одинарной, что накладывает ограничение на максимальный размер рассматриваемых систем для решения на GPU ($n \sim 13000$). Хотя возможны варианты сокращения затрат памяти при хранении матриц S и T в одном из разреженных форматов.

Сравнение эффективности распараллеливания предобуславливателя P_{AISM} и характеристики матриц представлены в таблице 1.

4. Результаты численных экспериментов

Для тестирования были использованы предобусловленные методы сопряженных градиентов и бисопряженных стабилизированных градиентов. Численные эксперименты проводились на GPU-ускорителе GeForce GTX 780 с 3 ГБ графической памяти и на восьми ядрах CPU (два четырехядерных процессора Intel Xeon E5-2609, 2.4 ГГц) и 64 ГБ оперативной памяти.

Часть тестовых задач выполнялась в пакете OpenFoam, в который была успешно выполнена интеграция программной реализации на GPU решения СЛАУ итерационным методом BiCGStab с параллельным предобуславливателем AISM. Кроме того, в численных экспериментах были использованы матрицы из коллекции The University of Florida Sparse Matrix Collection. Решались системы уравнений Ay = f с известным точным решением y = [1, 1, ..., 1], матрицы которых хранились в сжатом строчном формате (CSR). В качестве начального приближения выбиралось $y_0 = [0, 0, ..., 0]$, а критерий сходимости — $||r_i|| \leq 10^{-6}||r_0||$, где $r_i = f - Ay_i$. В численных экспериментах точность фильтрации для матриц S и T выбиралась $\tau_u = \tau_v = 0.01$, $\beta = 100$.

Таблица 2. Вычислительные затраты предобуславливателей при решении систем с несимметричными матрицами, $t_p/t_{its}(its)$

Матрица	$P_{ILU(0)}$	$P_{ILU(1)}$	P_{AISM}	
A	CPU/GPU	CPU/GPU	$\tau = 0.01$	$\tau = 0.0001$
	0 0009 /0 12 (140)	0.002/0.12 (106)	7 = 0.01	7 = 0.0001
cadeo	0.0002/0.13(140)	0.002/0.12(100)	0.30/0.13(179)	0.37/0.13(107)
ex37	0.003/0.03 (3)	1.4/0.03~(2)	15.66/0.004~(5)	15.44/0.004~(4)
rajat03	_	—	$169/0.07\ (84)$	$169/0.11\ (135)$
flow meter 5	$0.002/0.36\ (63)$	$0.04/0.34\ (32)$	$357.6/0.11\ (120)$	$357.9/0.15\ (112)$
ex19	0.04/-	$699/0.5\ (279)$	$700/0.35\ (132)$	$703/0.39\ (128)$
sme3Da	0.15/13.23(1700)	495/16.61(158)	814/11.83(2032)	843/13.5(1338)
poisson3Da	$0.04/0.13\ (24)$	56.3/0.58 (11)	$1049/0.05\ (28)$	1066/0.24 (30)

Сравним сначала результаты полученные при решении несимметричных систем. Для решения использовался итерационный алгоритм BiCGStab, в котором в качестве предобуславливателя берется одно из рассматриваемых разложений класса ILU. Предобуславливатель $P_{ILU(p)}$ [1] получается на основе ILU алгоритма расширением шаблона ненулевых элементов для матриц L и U. При добавление элементов в качестве кандидатов рассматриваются лишь те элементы, относительная норма которых превышает τ , и при этом расширятся каждая строка шаблона ненулевых элементов не более чем на p элементов.

Для проведения численных экспериментов матрицы, свойства которых приведены в таблице 1, хранились в сжатом формате CSR. Предобуславливатель ILU(p) формировался на центральном процессоре, а итерационный процесс решения BiCGStab на ускорителе вычислений. В таблице 2 приведено соотношение времени формирования предобуславливателя и времени итерационного процесса и числа итераций, необходимых для решения систем линейных уравнений с использованием ILU(p) разложений и рассматриваемого алгоритма AISM. Использование ILU(p) в случае матрицы "ex19"не привело к решению системы за приемлемое время. По времени работы алгоритмов решения систем BiCGStab видны преимущества предобуславливателя P_{AISM} . Затраты на одну итерацию в этом случае существенно ниже, чем при ILU(p). Достигнутое ускорение при формировании явного предобуславливателя и требует дальнейших исследований.

Исключительно для целей тестирования в таблице 3 приведены результаты для явных предобуславливателей AINV, FSAI, TNS при решении симметричных систем уравнений методом сопряженных градиентов с формированием матрицы предобуславливателя на центральных процессорах и графических ускорителях. По скорости сходимости результаты многих тестов для различных предобуславливателей сопоставимы, а для матриц "bcsstk15", "vibrobox"применение P_{AISM} позволило получить меньшее число итераций. Затраты на решения систем уравнений с предобуславливателями P_{AISM} и P_{AINF} примерно одинаковы.

Потенциально сокращение затрат на формирования P_{AISM} для случая симметричных матриц представляется возможным и перспективным. Так для достаточно большой и заполненной матрицы "mcs10848" затраты на построение предобуславливателя P_{FSAI} практически втрое превышают время формирования предлагаемого алгоритма.

Таблица 3. Вычислительные затраты явных предобуславливателей при решении систем с симметричными матрицами, $t_p/t_{its}(its)$

Матрица	P_{AINV}	P_{FSAI}	P_{TNS}	$P_{AISM}(\tau = 0.0001)$
A	$\mathrm{CPU}/\mathrm{GPU}$	$\mathrm{CPU}/\mathrm{GPU}$	$\mathrm{GPU}/\mathrm{GPU}$	$\mathrm{GPU}/\mathrm{GPU}$
nasa2910	2.5/0.65 (314)	19.5/0.04 (129)	0.002/0.32 (962)	8.78/0.62 (387)
bcsstk15	$0.15/0.6\ (293)$	$1.47/0.03\ (109)$	$0.002/0.08\ (259)$	20.37/0.17 (81)
Kuu	4.03/0.16 (75)	11.7/0.02 (45)	$0.004/0.1\ (241)$	$142.03/0.18\ (103)$
msc10848	1.48/2.68 (1190)	1168/0.02 (35)	$0.006/14.7\ (21871)$	505.5/5.12 (846)
vibrobox	1.29/1.42 (683)	85/0.05 (92)	0.003/1.98 (4682)	814/0.81 (52)

Алгоритм AISM обладает определенными свойствами при распараллеливании, например, при замене скалярных произведений на матрично-векторные операции. Время вычисления предобуславливателя остается значительным и превышает затраты итерационных приближений при решении СЛАУ, в отличии от предобуславливателя AINV, где затраты во многих случаях соизмеримы. Дальнейшее повышение параллельной эффективности предобуславливателя AISM должно быть связано с тем или иным блочным представлением алгоритма и выделением крупноблочной декомпозиции матрицы.

Литература

- 1. Saad Y Iterative Methods for Sparse Linear Systems. SIAM, 2003.
- Benzi M. Preconditioning Techniques for Large Linear Systems: A Survey // Journal of Computational Physics. 2002. V. 182, № 2. P. 418–477.
- 3. Sherman J., Morrison W.J. Adjustment of an inverse matrix corresponding to a change in one element of a given matrix // Ann. Math. Statistics. 1950. V. 21, № 1. P. 124–127.
- Недожогин Н. С., Сармакеева А. С., Копысов С. П. Высокопроизводительный алгоритм Шермана-Моррисона обращения матриц на GPU // Вестник ЮУрГУ. Серия "Вычислительная математика и информатика". 2014. Т. 3, № 2. С. 101–108.
- 5. Bru M., Cerdán J., Marín J., Mas J. Preconditioning sparse nonsymmetric linear systems with Sherman-Morrison formula // SIAM J. Sci. Comput. 2003. V. 28, № 2. P. 701 –715.
- Копысов С. П., Кузьмин И. М., Недожогин Н. С., Новиков А.К. Параллельные алгоритмы формирования и решения системы дополнения Шура на графических ускорителях // Ученые записки Казанского университета. Серия «Физико-математические науки.» 2012. Т. 154, № 3. С. 202–215.