О реализации и тестировании неявной схемы решения трехмерных уравнений Навье-Стокса на неструктурированной сетке для архитектуры с несколькими графическими ускорителями

Н.М. Евстигнеев, О.И. Рябков

Институт системного анализа Российской Академии наук

В работе рассматривается реализация численного полностью неявного по времени метода решения системы уравнений Навье-Стокса на неструктурированной гетерогенной сетке для multigpu архитектуры. В схеме используется метод сборки матрицы линеаризации системы с применением аналитических выражений для линеаризованных вязких и невязких потоков на гранях. Тестирование метода проводилось в основном на двух примерах: квазиодномерная задача Сода (невязкая часть схемы, тестировалась на различных сетках, включая сетку из тэтраэдров) и закрученное течение в канале цилиндрической формы. Помимо этого рассматривалась модельная задача обтекания цилиндра на сверхзвуковой скорости, для которой применялась неявная по вязким членам схема. Проведено сопоставление схем первого и второго порядков.

1. Введение

Необходимость применения неявных методов для уравнений математической физики вполне очевидна. Жесткие условия ограничения шага по времени для явных схем (особенно т.н. акустическое и диффузионное ограничения) приводят к невозможности проводить расчет за обозримое время. Построение неявной схемы на архитектуре графических процессоров сопряжено с рядом трудностей, связанных с архитектурными особенностями GPU и трудностью распараллеливания эффективных итерационных (в основном Крыловских) методов решения СЛАУ на SPMT (single process multiple thread) архитектуры. Предполагается воспользоваться результатами предыдущих работ авторов [6], [9] и обобщить их на неструктурированную сетку, с целью ускорить численное решение н.к.з. на GPU.

2. Рассматриваемые уравнения, начально-краевая задача

Будем рассматривать однородные уравнения гиперболического и параболического типов на ограниченной области $\Omega \times [0..T], \Omega \subset \mathbb{R}^3$:

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F_1}}{\partial x_1} + \frac{\partial \mathbf{F_2}}{\partial x_2} + \frac{\partial \mathbf{F_3}}{\partial x_3} = \mathbf{0}; \tag{1}$$

где векторы $\mathbf{U}, \mathbf{F_1}, \mathbf{F_2}, \mathbf{F_3}$ определяют уравнение. Будем рассматривать два уравнения - первое, модельное уравнение переноса, второе, основное для данной работы, уравнение динамики вязкого сжимаемого газа. Скалярное уравнение переноса:

$$\mathbf{U} = [S]^T; \mathbf{F_1} = [a_1 S]^T; \mathbf{F_2} = [a_2 S]^T; \mathbf{F_3} = [a_3 S]^T;$$
(2)

где: S - скалярная функция; $\mathbf{a} = \{a_1, a_2, a_3\}$ - скорость переноса скалярной функции. Система уравнений Навье-Стокса (без источниковых членов):

$$\begin{aligned} \mathbf{U} &= \left[\rho; \rho v_{1}; \rho v_{2}; \rho v_{3}; \rho \varepsilon + \frac{1}{2} \rho v^{2}\right]^{T}; \\ \mathbf{F_{1}} &= \mathbf{F_{c1}} + \mathbf{F_{d1}} = \\ &\left[\rho v_{1}; \rho v_{1} v_{1} + P - \sigma_{11}; \rho v_{2} v_{1} - \sigma_{21}; \rho v_{3} v_{1} - \sigma_{31}; (\rho \varepsilon + \frac{1}{2} \rho v^{2} + P) u - \sum_{j=1}^{3} \sigma_{1j} v_{j} - \chi \frac{\partial T}{\partial x_{1}}\right]^{T}; \\ \mathbf{F_{2}} &= \mathbf{F_{c2}} + \mathbf{F_{d2}} = \\ &\left[\rho v_{2}; \rho v_{1} v_{2} - \sigma_{12}; \rho v_{2} v_{2} + P - \sigma_{22}; \rho v_{3} v_{2} - \sigma_{32}; (\rho \varepsilon + \frac{1}{2} \rho v^{2} + P) v - \sum_{j=1}^{3} \sigma_{2j} v_{j} - \chi \frac{\partial T}{\partial x_{2}}\right]^{T}; \\ \mathbf{F_{3}} &= \mathbf{F_{c3}} + \mathbf{F_{d3}} = \\ &\left[\rho v_{3}; \rho v_{1} v_{3} - \sigma_{13}; \rho v_{2} v_{3} - \sigma_{23}; \rho v_{3} v_{3} + P - \sigma_{33}; (\rho \varepsilon + \frac{1}{2} \rho v^{2} + P) w - \sum_{j=1}^{3} \sigma_{3j} v_{j} - \chi \frac{\partial T}{\partial x_{3}}\right]^{T}; \\ &\sigma_{ij} &= \eta \left(\frac{\partial v_{i}}{\partial x_{j}} + \frac{\partial v_{j}}{\partial x_{i}} - \frac{2}{3} \delta_{ij} \sum_{k=1}^{3} \frac{\partial v_{k}}{\partial x_{k}}\right) + \zeta \delta_{ij} \sum_{k=1}^{3} \frac{\partial v_{k}}{\partial x_{k}}; \\ &P &= \frac{\rho \varepsilon}{\gamma - 1}; P = \frac{\rho RT}{\mathcal{M}} \end{aligned}$$

где: ρ - плотность; $\mathbf{v} = \{v_1, v_2, v_3\}$ - вектор-функция скорости жидкости; ε - удельная внутренняя энергия; σ_{ij} - тензор вязких напряжений; P - давление; T - температура; R - универсальная газовая постоянная; \mathcal{M} - молярная масса; γ - показатель адиабаты; η - первая вязкость; ζ - вторая вязкость; χ - коэффициент теплопроводности. $\mathbf{F_{cj}}$ соответствуют конвективным членам, $\mathbf{F_{dj}}$ - диффузионным (вязкость и теплопроводность). Для кратности через v^2 обозначен квадрат модуля скорости. Также мы допускали возможность зависимости коэффициентов вязкость и теплопроводности от температуры: $\eta = \eta(T), \ \chi = \chi(T)$. Вторая вязкость во всех расчетах бралась равной нулю. В качестве уравнения состояния мы используем уравнение состояния идеального газа.

Уравнение (2) является гиперболическим. Система (3) может быть как параболической (собственно уравнения Навье-Стокса), так и гиперболической (в случае, когда $\eta = 0$ и $\chi = 0$, система переходит в систему уравнений Эйлера).

Помимо самой системы уравнений Навье-Стокса нам понадобятся якобианы гиперболических потоков:

$$A_{1} = \frac{\partial F_{c1}}{\partial U} = \begin{vmatrix} 0 & 1 & 0 & 0 & 0 \\ -v_{1}^{2} + \theta b & 2v_{1} - v_{1}b & -v_{2}b & -v_{3}b & b \\ -v_{1}v_{2} & v_{2} & v_{1} & 0 & 0 \\ -v_{1}v_{3} & v_{3} & 0 & v_{1} & 0 \\ -v_{1}h + v_{1}\theta b & h - v_{1}^{2}b & -v_{1}v_{2}b & -v_{1}v_{3}b & v_{1} + v_{1}b \end{vmatrix};$$
(4)
$$h = \varepsilon + \frac{1}{2}v^{2} + \frac{P}{\rho}; \theta = v^{2} - (\varepsilon + \frac{1}{2}v^{2}) + \frac{\rho P_{\rho}}{P_{\varepsilon}};$$
$$b = \frac{P_{\varepsilon}}{\rho}; P_{\varepsilon} = \left(\frac{\partial P}{\partial \varepsilon}\right)_{\rho}; P_{\rho} = \left(\frac{\partial P}{\partial \rho}\right)_{\varepsilon}$$

Якобианы A_2 и A_3 выписываются аналогично.

3. Явная по времени схема аппроксимации

Описываемый в данной статье численный метод ориентирован на решение практических задач с достаточно сложной геометрией, поэтому нами используется неструктурированная гетерогенная сетка, где один элемент обозначается как \mathcal{T} . Среди поддерживаемых на данный момент типов элементов имеются тетраэдры, треугольные призмы, четырехугольные пирамиды и гексаэдры. Пусть всего таких элементов М и $\Omega = \bigcup_{i=1}^{M} \mathcal{T}_i, \ \mathcal{T}_i \cap \mathcal{T}_j = \emptyset, i \neq j$. Под соседями '0' порядка будем понимать элементы, имеющие общую грань (сторону). Тогда, для любого элемента \mathcal{T}_i существует не пустое множество соседей '0' порядка. Обозначим множество индексов этих элементов через $\mathcal{N}_i^0 = \{n_{i1}^0, n_{i2}^0, \dots\}$. Запишем дискретную по пространству консервативную аппроксимацию для элемента \mathcal{T}_i уравнения (1):

$$\frac{d\overline{\mathbf{U}}_{i}}{dt} = -\frac{1}{W_{i}} \sum_{j=1}^{|\mathcal{N}_{i}^{0}|} \left(\mathcal{L}_{c} \left(U_{ij}^{L}, U_{ij}^{R}, \mathbf{n}_{ij} \right) + \mathcal{L}_{d} \left(U_{ij}^{L}, U_{ij}^{R}, (\nabla_{h}U)_{ij}^{F}, \mathbf{n}_{ij} \right) \right),$$
(5)

где: W_i - объем элемента i, $\overline{\mathbf{U}}_i$ - среднее значение вектора по элементу, запись $U_{ij}^{L/R}$ означает значение вектора U на левой/правой стороне относительно грани соединяющей элемент i с его j-м соседом, $(\nabla_h U)_{ij}^F$ - аппроксимация градиента на грани, $\mathbf{n_{ij}} = \{n_x, n_y, n_z\}$ - внешняя нормаль стороны элемента *i*, оператор $\mathcal{L}_c(U_1, U_2, n)$ есть оператор, аппроксимирующий конвективный поток F_c консервативных переменных U через *j*-ю грань элемента *i* по значениям слева и справа от грани. Аналогично $\mathcal{L}_d(U_1, U_2, g, n)$ - оператор, аппроксимирующий F_d . На операторы, аппроксимирующие потоки, накладываются следующие условия:

Консервативность. Поток должен полностью обнуляться при суммировании по соседям первого порядка, поэтому предполагается, что $\mathcal{L}_c(U_1, U_2, n) = -\mathcal{L}_c(U_2, U_1, -n)$ $u \mathcal{L}_d(U_1, U_2, g, n) = -\mathcal{L}_d(U_2, U_1, g, -n).$

Согласованность. Численный поток при одинаковых аргументах полностью переходит в физический поток, т.е. $\mathcal{L}_c(U_1, U_1, n) = F_{c1}(U_1)n_x + F_{c2}(U_1)n_y + F_{c3}(U_1)n_z$ $u \mathcal{L}_d(U_1, U_1, g, n) = F_{d1}(U_1, g)n_x + F_{d2}(U_1, g)n_y + F_{d3}(U_1, g)n_z.$

Например, поток уравнения скалярного переноса (2):

$$\mathcal{L}(S_1, S_2, \mathbf{n_{ij}}) = \frac{1}{2}(S_1 + S_2)(\mathbf{a} \cdot \mathbf{n}) + \frac{1}{2}(S_1 - S_2)|(\mathbf{a} \cdot \mathbf{n})|$$
(6)

где · обозначает скалярное произведение векторов. Способ вычисления значений $U_{ij}^{L/R}$ определяется используемым методом реконструкции. Для методов первого порядка достаточно положить $U_{ij}^L = \overline{U}_i, U_{ij}^R = \overline{U}_{n_{ij}^0}.$

Для увеличения порядка пространственной аппроксимации используются различные методы. В наших расчетах мы применяли метод, основанный на вычислении градиентов консервативных переменных U в ячейке *i* на основании значений переменных в самой ячейке и ее соседях '0' порядка. Для получения нелимитированного градиента мы использовали метод наименьших квадратов. Если обозначить через $\alpha = \{\alpha_1, \alpha_2, \alpha_3\}$ компоненты искомого градиента для k-ой компоненты U, то реконструкция внутри элемента і будет иметь вид:

$$(U_i^{rec})_k(x) = (\overline{U}_i)_k + (x_1 - x_{i1}^c)\alpha_1 + (x_2 - x_{i2}^c)\alpha_2 + (x_3 - x_{i3}^c)\alpha_3$$
(7)

Здесь через $(U)_k$ мы обозначаем k-ую компоненту вектора $U, x = \{x_1, x_2, x_3\}, x_i^c =$ $\{x_{i1}^c, x_{i2}^c, x_{i3}^c\}$ обозначает координаты барицентра элемента i. Тогда коэффициенты реконструкции ищутся как решение задачи минимизации:

$$\alpha = \underset{\alpha}{\operatorname{argmin}} (\sum_{j=1}^{|\mathcal{N}_{i}^{\circ}|} ((\overline{U}_{i})_{k} - (\overline{U}_{n_{ij}})_{k} + (x_{n_{ij},1}^{c} - x_{i1}^{c})\alpha_{1} + (x_{n_{ij},2}^{c} - x_{i2}^{c})\alpha_{2} + (x_{n_{ij},3}^{c} - x_{i3}^{c})\alpha_{3})^{2})$$

$$(8)$$

После вычисления нелимиторванных градиентов α к ним применяется процедура лимитирования. Используемые нами процедуры лимитирования уменьшают значение наклона реконструкции вдоль векторов, соединяющих барицентр *i*-ого элемента с барицентрами его граней, таким образом, чтобы при вычислении реконструируемых значений по формуле (7) с использованием лимитированных градиентов $\tilde{\alpha}$ на гранях элементов выполнялись условия TVD. Нами использовались два типа условий, которые в одномерном случае переходят в условия MinMod и SuperBEE.

Процедура вычисления градиентов переменных $(\nabla_h U)_{ij}^F$ на гранях ячеек, необходимых для вычисления вязких потоков, тесно связана с описанной выше процедурой вычисления градиентов в центрах ячеек. В действительности, тангенсальная часть градиента на грани бралась равной взвешенной сумме градиентов в соседних ячейках. Нормальная компонента вычислялась непосредственно по значениям переменных в этих ячейках. Отдельная процедура для вычисления нормальной компоненты необходима для того, чтобы устранить четно-нечетное расщепление на гексагональных сетках (например, в области погранслоя).

Интегрирование по времени проводилось обычным методом Эйлера первого порядка или явным TVD методом второго порядка.

4. Неявная по времени схема аппроксимации

Наш подход к построению неявной схемы основан на применении метода «черного ящика». Если мы обозначим через $\overline{U} = (\overline{U}_1, ..., \overline{U}_M)$ общий вектор, состоящий из векторов консервативных переменных (для уравнения переноса (2) это будет вектор размера М, для уравнений Навье-Стокса (3) - матрица размера Мх5), то неявная по времени дискретизация полудискретного уравнения (5) будет иметь вид:

$$\frac{\overline{U}^{n+1} - \overline{U}^n}{\delta t} = f(\overline{U}^{n+1}) \tag{9}$$

Где \overline{U}^n - сеточное значение вектора \overline{U} в момент времени t_n , δt - шаг по времени, $f(\overline{U})$ включает в себя всю правую часть уравнения (5). Альтернативой данному подходу является подход с применением расщепления по переменным (он существенно зависит от конкретной системы уравнений). Для вычислительной газовой динамики к данному классу можно отнести методы compressible PISO и compressible SIMPLE [2]. Среди преимуществ последних методов можно назвать необходимость решения систем линейных уравнений меньшей размерности (несколько систем размера M вместо одной системы размера 5M). С другой стороны, данные методы имеют меньшую область применимости, в особенности при больших значениях числа Маха.

В описываемом в данной статье подходе мы решаем нелинейное уравнение (9) методом Ньютона с применением техники глобализации. При выполнении одной итерации метода нам необходимо разрешить линейную систему уравнений, матрица которой является якобианом уравнения (9). В статьях посвященных методам с полностью неявной схемой иногда указывается на возможность применения так называемого «matrix-free» метода, см., например, [5]. При этом вычисление значений производных нелинейного уравнения вдоль направлений можно проводить, например, методом «automatic differentiation». При попытках реализации данного метода мы выявили несколько его недостатков. К сожалению, в данном подходе нет возможности эффективно вычислить диагональ матрицы, т.е. нет возможности использовать диагональный предобуславливатель. Решение систем без диагонального предобуславливания приводит к крайне низкой скорости сходимости итерационного метода или к его расходимости. Способы вычисления диагонали с применением техники AD требуют дополнительные расчеты производных вдоль нескольких опорных векторов, что существенно понижает эффективность метода. К тому же сама процедура вычисления производной требует двукратного увеличения количества переменных, что при реализации на CUDA ведет к двукратному увеличению количества регистровых переменных и, соответственно, негативно сказывается на производительности. Поэтому в описываемом в данной статье методе мы перешли к процедуре, при которой якобиан вычисляется на основе аналитических выражений. В действительности, наш подход является компромиссом между «matrix-free» подходом и полным вычислением матрицы якобиана, поскольку мы представляем якобиан в виде суммы произведений некоторых матриц, причем некоторые из них не записываются явно в память. Подобный подход позволяет значительно сократить необходимый объем памяти и количество операций, выполняемых при вычислении произведения якобиана на вектор переменных. Для решения линейной системы используются методы BiCGStab или CGS с геометрическим многосеточным предобуславливателем.

5. Задача Сода о распаде разрыва

Задача Сода о распаде одномерного разрыва является классическим тестом для проверки работоспособности и качества схемы. Разлчиные варианты этого теста могут быть найдены, например, в [1]. В данном тесте рассматривается невязкий газ (уравнения Эйлера), а решение характеризуется наличием сверхзвуковых областей и сильных разрывов.

Мы проводили тестирование в трех основных вариантах. В первом из них задача решалась на одномерной сетке (отдельная от основного кода тестовая реализация). Во втором - на трехмерной гексаэдральной сетке в прямоугольной области, при этом по оси х постановка задачи совпадала с первым вариантом, а переменные в начальных условиях не зависели от координат у и z (квазиодномерный тест). В третьем варианте теста мы использовали в качестве области решения цилиндр. Как и во втором варианте все переменные в начальных условиях зависели только от одной координаты, однако в данном случае использовалась сетка из тетраэдров, никаким образом не выровненная с основным направлением. Таким образом, последний тест также является тестом на квазиодномерность, но существенно трехмерная сетка делает его более реалистичным.

Первый и второй варианты теста показали (как это и должно быть) одинаковый результат. Характерное распределение плотности для сетки с M=256 элементами (вдоль главного направления) показано на рисунках 1а и 1b. На рис. 1а показан результат для явной схемы с числом Куранта CFL=0.5, на рис. 1b - для неявной с CFL=3. Красный цвет на графике относится к схеме первого порядка, зеленый - к схеме второго порядка. Можно видеть, что неявная схема достаточно адекватно воспроизводит результат, при этом второй порядок в неявной схеме (даже на достаточно большой сетке и небольшом CFL) не дает существенного улучшения.

Рис. 1. Тест Сода на сетке из гексаэдров, распределение плотности вдоль главного направления.

Рис. 2. Тест Сода на сетке из тетраэдров, распределение плотности вдоль главного направления.

На рисунках 2a и 2b в полностью аналогичной форме приведены результаты для третьего варианта теста (на сетке из тетраэдров, графики соответствуют центральной линии). Сетка в данном случае имела размер М=200000 элементов, характерный размер сетки вдоль основного направления составлял примерно 100 элементов. Мы можем видеть, что в данном случае второй порядок в неявной схеме (несмотря на больший относительный шаг по времени, CFL = 5) дает значительное улучшение качества решения. Такое различие между результатами второго и третьего вариантов теста мы объясняем следующим образом. Для гексаэдральной сетки основной вклад в ошибку решения в случае неявной схемы должно быть вносит способ аппроксимации по времени (неявная схема эйлера первого порядка). В то время как в случае с сеткой из тетраэдров значительная часть ошибки - это ошибка пространственной аппроксимации (что косвенно подтверждается «смазанным» видом решения для явной схемы первого порядка). Должно быть, этим и объясняется улучшение качества решения неявной схемы при использовании второго порядка по пространству.

6. Задача о закрученном потоке в трубе с открытым концом

Данная задача рассматривается в связи с тем, что авторы ранее проводили численное моделирование с применением явной схемы, а также в связи с тем, что имеются экспериментальные данные PIV (цифровая трассерная визуализация) измерений, выполненных в ОИВТ РАН, что позволяет сопоставить результаты расчета с экспериментальными данными, см. [11].

Геометрия расчетной области показана на рис. 3. Расчетная область представляет

Рис. 3. Геометрия и граничные условия для задачи течения закрученного потока в цилиндрической трубе. 1 - входные, а 2 - выходные граничные условия. Диаметр - 0.054м, длина - 0.78м.

из себя цилиндр, с постоянным диаметром 0.054м и длиной 0.78м. Газ - воздух, массовый расход газа составляет 0.008кг/с при нормальных условиях, т.е. атмосферном давлении (101325Па) и комнатной температуре (293.5К). Исходные данные взяты из экспериментальной установки [11].

Начальные условия: в начальный момент газ с комнатной температурой покоится ($\mathbf{V} = 0_{\text{M}}/\text{c}, T = 293.5K$) во всем объеме.

Граничные условия разделяются на входные в области 1, выходные в области 2 и стенку для всей оставшейся области. Для области 1 ставятся условия Дирихле для скорости газа, температуры и условия Неймана для плотности. В области 1 около торца кварцевой трубы расположено 4 прямоугольных отверстия, через которые тангенциально подается газ. Входные скорости \mathbf{V}_{in} имеют составляющие $\mathbf{n} = \{0.1; 0.99 \cdot a; 0.99 \cdot b\}, \mathbf{V}_{in} = \mathbf{n} \cdot M$, где *a* и *b* выбираются из условий нахождения отверстий относительно орт глобальной системы координат, а *M* определяется из условия подачи массового расхода на вход в камеру, равного M = 0.008 кг/с. Входная температура считается равной комнатной температуре T = 293.5K. Теплопроводность через стенки трубы считается незначительной (область твердых стенок термоизолирована), стенка гидравлически гладкая, на всей стенке ставится условие прилипания $\mathbf{v} = 0$. На выходе из трубы, в области 2, ставятся граничные условия свободного истечения, и в центре сечения в точке при $r \sim 0$ давление доопределяется значением $P_0 = P_{atm}$.

Максимальное число Маха составляет порядка 0.2, т.е. рассматривается сильно дозвуковой режим. Применение явной схемы в таком режиме течения значительно снижает эффективность метода и замедляет расчет. Кроме того, выигрыш времени по полу-неявной схеме (неявная только диффузия) также будет незначительным, а в некоторых случаях и проигрышным относительно явной схемы. Поэтому данная задача достаточно показательно демонстрирует эффективность полностью неявной схемы.

Степень интенсивности закрутки можно определить как отношение углового мо-

мента к осевому по всему сечению трубы во входном торце:

$$S = \frac{2\pi \int_0^R r^2 \rho V_{\phi} V_z dr}{2\pi R \int_0^R r \rho V_z^2 dr}.$$
 (10)

Численно расчет интеграла показывает, что $S \sim 32.3$, т.е. данное течение можно отнести к интенсивно закрученным, [12]. Таким образом, задача является стресс-тестом с точки зрения точности метода, поскольку ожидается значительное перераспределение течения с образованием возвратных зон в закрученном потоке. Результаты расчетов анализируется путем построения графиков V_{ϕ} , V_z для явной и неявной схемы, а также сопоставления с данными PIV. Сечения для сравнения показаны на рис. 4.

Рис. 4. Сечения для сопоставления результатов. Вход слева. Ноль отсчета справа. Справа налево: Z=-5; Z=-100; Z=-150; Z=-200; Z=-270; Z=-310; Z=-365; Z=-465; Z=-565; Z=-664; Z=-765.

Физическое время задачи для явной и неявной схемы идентичны. Решение проводилось до установления по квазипериодическому решению. Решения проводились для схем как первого, так и второго порядка аппроксимации по пространственным переменным. Трехмерный вид решения для неявной численной схемы второго порядка показан на рис. 5.

Рис. 5. Внешний вид решения задачи течения закрученного потока, неявная схема, мгновенные значения скорости.

Рис. 6. Сравнение первого и второго порядка аппроксимации. Мгновенные значения скорости, логарифмический масштаб векторов.

Сразу можно отметить, что методы первого порядка точности не пригодны для данной задачи. Наблюдаемая в эксперименте прецессия основного вихря и образование возвратных зон при расчете не наблюдались. Для сравнения на рис. 6 показано сопоставление мгновенных скоростей для методов первого и второго порядка.

Для сравнения на рис. 7 приведены решения для явной и неявной схем второго порядка.

Видно, что явный метод несколько более точен при сопоставлении мгновенных значений скоростей. Несмотря на это, прецессия вихря и возвратные рециркуляционные течения наблюдаются как в явной так и в неявной схеме, причем частота прецессии практически совпадает.

При сопоставлении осредненных значений скоростей, различия практически не наблюдаются. Так, для сечения -100 имеются данные PIV из [11] и можно провести сопоставление с результатами физического эксперимента. Такое сопоставление для осредненных скоростей показано на рис. 8. Можно отметить удовлетворительное совпадение результатов. Заниженное значение тангенциальной составляющей скорости для неявной схемы, скорее всего, связано с отсутствием модели турбулентности, поскольку расчет на CFL=300 без последней был сделан лишь в демонстративных целях.

В целом можно сказать, что изложенный неявный метод решения имеет достаточную точность для проведения прикладных расчетов. Сопоставление эффективности расчета явной и неявной схемы для данной задачи показано в следующем разделе.

7. Анализ производительности

Можно ожидать, что неявная схема расчета будет наиболее производительной на достаточно больших сетках, когда ограничение на шаг по времени сделает явную схему менее эффективной. Расчет, описанный в предыдущем разделе, производился на сетке размером в 1.5 миллиона ячеек. К сожалению, даже для такой сетки среднего размера мы столкнулись с проблемой нехватки памяти графических устройств. Так,

(а) Неявная схема, второй порядок, (в сечение -465. че

(b) Явная схема, второй порядок, сечение -465.

Рис. 7. Сравнение явного и неявного метода. Мгновенные значения скорости, логарифмический масштаб векторов.

Рис. 8. Сравнение явного, неявного методов и физического эксперимента PIV, сечение -100, период осреднение 0.1с.

(а) Схема первого порядка.

(b) Схема второго порядка.

Рис. 9. Полное время решения задачи о закрученном потоке, сравнение явной схемы, неявной схемы и неявной схемы с использованием многосеточного подхода.

для неявной схемы с одним уровнем нам потребовалось как минимум 2 устройства GTX Titan Black для запуска задачи, для неявной схемы с двумя уровнями - 3 таких устройства. На рис. 9 мы приводим времена расчета для указанной задачи. Черный цвет соответствует явной схеме, красный - неявной схеме с одним уровнем, зеленый - неявной схеме с двумя уровнями. Рисунок слева относится к схеме первого порядка, рисунок справа - к схеме второго порядка. Отличие времен для схем различного порядка незначительно в случае явной схемы, что связано с переиспользованием градиентов необходимых для расчета вязких потоков в процедуре реконструкции. В случае неявной схемы расчет второго порядка требует на 20%-50% больше времени, что связано с ухудшением скорости сходимости схемы. В целом, использование неявной схемы для расчета первого порядка на данной задаче дает выигрыш относительно явной схемы примерно в 4-5 раз для схем с 1 уровнем и выигрыш примерно в 9-10 раз для схем с двумя уровнями. Для схем второго порядка с 1 уровнем показатели аналогичны, а вот эффективность от использования многосетчного подхода снижается. Эффективность распараллеливания для явной схемы варьируется на уровне от 75% до 90%. Из сопоставления времен выполнения следует, что эффективность распараллеливания неявной схемы примерно на 5% ниже.

8. Заключение

В рассмотренной работе кратко описана численная схема и метод решения для уравнений динамики вязкого теплопроводного сжимаемого газа. В отличие от более ранних работ авторов [8], разработанная неявная схема позволяет получить значительное ускорение на multigpu архитектуре с удовлетворительным коэффициентом масштабирования (до 80%). Проведены расчеты, подтверждающие валидность данного утверждения. В целом, разработанный численный метод может применяться для решения задач внутреннего и внешнего течения как в дозвуковых так и в сверхзвуковых режимах на неструктурированной сетке. Дальнейшие работы в данном направлении направлены на повышение порядка аппроксимации, улучшение сходимости решения СЛАУ и обобщение на гетерогенные вычислительные архитектуры.

Список литературы

- 1. Toro E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag, 1999.
- 2. Chung T. J. Computational Fluid Dynamics. Cambridge University Press, 2002.
- Ascher U. M., Ruuth S. J., Spiteri R. J. Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. // Applied Numerical Mathematics: Transactions of IMACS. Vol.25. pp.151–167. 1997.
- 4. George J. A. and Liu J. W-H. Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, 1981.
- Bramkamp F. D., Pollul B., Rasch A., Schieffer G. Matrix-Free Second-Order Methods in Implicit Time Integration for Compressible Flows Using Automatic Differentiation. // International Journal of Computational Science and Engineering. Vol.9. Issue 5/6. pp. 484–498. 2014.
- 6. Евстигнеев Н.М. Интегрирование уравнения Пуассона с использованием графического процессора технологии CUDA. // Журнал НИВЦ МГУ "Вычислительные методы и программирование". Т.10. Стр.268–274. 2009.
- Евстигнеев Н.М. Интегрирование трехмерных уравнений невязкого газа на неструктурированной сетке с применением распределенных вычислений. //Журнал НИВЦ МГУ "Вычислительные методы и программирование". Т.8. Стр.252– 264. 2007.
- 8. Евстигнеев Н.М. Конечно-объемная TVD схема для решения 2D эволюционных уравнений мелкой воды. // Журнал НИВЦ МГУ "Вычислительные методы и программирование". Т.7. Стр.108–112. 2006.
- 9. Евстигнеев Н.М., Рябков О.И. Курс лекций и практических занятий "CFD using CUDA". 2011–2012.
- Evstigneev N.M., Magnitskii N.A. FSM Scenarios of Laminar-Turbulent Transition in Incompressible Fluids in Nonlinearity, Bifurcation and Chaos - Theory and Applications, Jan Awrejcewicz and Peter Hagedorn (Ed.), ISBN: 978-953-51-0816-0, InTech, 2012.
- Klimov A., Grigorenko A., Efimov A., Moralev I., Polyakov L., Sidorenko M., Tolkunov B., Evstigneev N., Ryabkov O. Vortex Control by Combined Electric Discharge Plasma. // Preprint AIAA-2013-0926.
- Al-Kabie H.S. Radial Swirler for Low Emissions Gas Turbine Combustion. PhD. Thesis, Univ. of Leeds, 1989.

Read More: http://arc.aiaa.org/doi/abs/10.2514/6.2013-926