Применение гибридной вычислительной системы к решению прикладных задач аэрогазодинамики*

Е.Ю. Карцева¹, А.О. Лацис², А.В. Панасенко¹, Ю.П. Смольянов², В.В. Чернов¹

ФГУП «Центральный научно-исследовательский институт машиностроения»¹, Институт прикладной математики имени М.В. Келдыша РАН²

Использованию графических ускорителей при решении прикладных задач уделяется большое внимание. В работе рассмотрены возможности использования гибридной вычислительной системы, основу которой составляют универсальные и графические процессоры.

1. Введение

Создание современных изделий ракетно-космической техники требует проведения имитационного моделирования их поведения в реальных условиях. Такие вычисления требуют использования высокопроизводительных вычислительных систем значительно более мощных, чем, например, рабочие станции. Поэтому приоритетным направлением является создание кластерных вычислительных систем с гибридной архитектурой на основе использования графических ускорителей, что является одним из самых недорогих и эффективных путей решения проблемы. Наиболее распространены в настоящее время графические ускорители компании NVIDIA [1].

2. Гибридная кластерная вычислительная система

В 2013 г. в ФГУП ЦНИИмаш была установлена гибридная кластерная вычислительная система (ГКВС), разработанная в ИПМ им. М.В. Келдыша РАН при участии ФГУП ЦНИИмаш. Кластер состоит из управляющего и 6 вычислительных узлов, соединенных с помощью коммутационной среды «MBC-Экспресс». Каждый вычислительный узел содержит по два 8-ядерных процессора Intel Xeon E7-8837 8-Cores и 3 графических ускорителя NVIDIA Tesla K20. Для ГКВС были адаптированы комплексы программ моделирования аэрогазодинамики.

Коммутационная среда «MBC-Экспресс» основана на стандарте компьютерной шины PCI Express (PCIe) и имеет древовидную структуру. Корнем дерева является ведущий узел, или Root Complex (в терминах шины PCIe). Листьями дерева являются устройства, подключенные к шине, таковыми здесь являются интерфейсные платы других вычислительных модулей, подключенных через коммутатор. Вершины дерева, не являющиеся листьями, представляют собой коммутаторы, т.е. устройства, способные принять пакет по некоторому входу, определить в пакете адрес назначения и в соответствии с ним выдать пакет на указанный выход.

Сеть «MBC-Экспресс», состоящая из коммутатора и интерфейсных плат, является совместной разработкой ИПМ им. М.В. Келдыша РАН и ФГУП «НИИ «Квант».

Кластер, построенный по технологии прямой коммутации каналов PCI-Express, peaлизует на аппаратном уровне общее поле памяти большого объема и внешних устройств для всех входящих в кластер узлов. При этом уровни скоростей и задержек при передаче данных в такой сети сравнимы с аналогичными показателями для передачи данных внутри компьютера. Так, время задержки при единичной записи данных в «чужую» память сокращается с 3-6 мкс до 200-400 нс.

^{*} Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта №13-08-12033.

3. Результаты оценки производительности кластера

В целях минимизации обмена данными между CPU и GPU расчет полностью проводится на GPU. При использовании GPU каждое ядро обычного процессора передает свою подобласть на отдельный графический ускоритель. В ходе расчета происходит лишь обмен значениями параметров граничных ячеек, как показано на рис. 1.

Рис. 1. Структура вычислений на СРU – GPU

Результаты оценки производительности гибридного кластера приведены в таблицах 1, 2 на примерах решения типовой задачи, возникающей при разработке ракетно-космической техники, – расчета аэродинамики спуска космического корабля типа «Союз» и результатах прямого расчета неустойчивости в сдвиговом слое, рассмотренной ниже.

В таблице 1 приведено время расчета и ускорение при расчете обтекания спускаемого аппарата космического корабля типа «Союз» в рамках модели уравнений Эйлера. Использовалась расчетная сетка размером 768×128×16 ячеек. Расчеты проводились на различном количестве GPU и для сравнения на том же количестве ядер CPU.

	Время ра	счета, с		Ускорение отно-
			Ускорение относи-	сительно 1 ядра
Ν	N ядер СРU	N GPU	тельно N ядер CPU	CPU
1	769,144	16,008	48,05	48,05
2	396,388	8,277	47,89	92,92
3	266,207	5,954	44,71	129,17
6	135,277	3,716	36,41	206,99
12	64,590	2,730	23,66	281,77

Таблица 1. Время расчета и ускорение

В таблице 2 представлены времена расчетов неустойчивости в сдвиговом слое при разных количествах и конфигурациях используемых GPU, а также ускорения и эффективности относительно расчета на одном GPU. На рис. 2 приведены графики ускорения и эффективности.

Таблица 2. Времена выполнения одинакового количества шагов программы ns_cu при разных количествах GPU

Количество	Конфигурация	Время рас-	Ускорение по срав-	Эффективность
GPU		чета, сек	нению с 1 GPU	
1	1 узел с 1 GPU	2394,00	1,00	1,00
2	1 узел с 2 GPU	1200,00	1,99	0,997
3	1 узел с 3 GPU	843,00	2,84	0,95
3	3 узла по 1 GPU	822,00	2,91	0,97

6	2 узла по 3 GPU	407,00	5,88	0,98
6	3 узла по 2 GPU	413,00	5,80	0,97
6	6 узлов по 1 GPU	414,00	5,78	0,96
9	3 узла по 3 GPU	286,00	8,37	0,93
12	4 узла по 3 GPU	222,00	10,78	0,90
15	5 узлов по 3 GPU	181,00	13,23	0,88
18	6 узлов по 3 GPU	155,00	15,45	0,86

Рис. 2. Ускорение и эффективность программы ns си при различном количестве GPU

Можно отметить высокую эффективность распараллеливания. Расчет на одном узле с тремя GPU идет медленнее расчета на трех узлах с одним GPU на каждом узле.

4. Пример расчета

Моделирование развития неустойчивости в свободном сдвиговом слое (задача о слое смешения) в двумерной постановке является одним из простых случаев моделирования турбулентности. Моделирование данной задачи проводилось на основе прямого численного решения полных нестационарных уравнений Навье-Стокса с использованием программы, разработанной в ИТПМ СО РАН. Схема течения показана на рис. 3. Рассматривалось течение, образующееся при смешении двух параллельных сверхзвуковых потоков газа, направленных вдоль оси Z и имеющих в начальный момент времени плоскую границу раздела, перпендикулярную оси X. В таком течении на границе потоков возникает неустойчивость Кельвина-Гельмгольца, приводящая к переходу ламинарного слоя смешения в турбулентный.

Рис. 3. Схема течения

На входной границе расчетной области задавался «ступенчатый» профиль основного течения (таким образом, начальная толщина слоя смешения равняется нулю) с наложенными на него возмущениями поперечной скорости U_x , зависящими от времени. В безразмерном виде, используемом в расчете (линейный размер в задаче отсутствует), параметры отнесены к их значениям в более быстром потоке: скорости обезразмерены на скорость звука, плотности и температуры – на плотность и температуру. Возмущения поперечной скорости имели вид $A\cos(\omega t - \alpha x)e^{-x^2/\sigma^2}$. На боковых гранях величины экстраполировались с нулевым порядком (снос потока). Число Рейнольдса, определяемое через параметры более быстрого потока при характерном размере 1 м, равнялось 1000.

Для вычислений на нескольких GPU вся расчетная область разделялась на число подобластей, равное числу GPU, и каждый GPU производил вычисления в своей подобласти и периодически обменивается данными с другими GPU. Для управления несколькими GPU, установленными на одном узле, использовалась технология OpenMP, а обмен данными на этом узле осуществлялся через память GPU. Для обмена данными между узлами использовался протокол MPI.

Ниже представлены результаты двух расчетов, параметры которых описаны в таблицах 3-5.

В таблицах 3 и 4 даны размерные и безразмерные начальные данные. Размерные величины обозначены индексом «*», обезразмеренные – тем же символом без индекса. Обозначения:

 C_1^*, C_2^* – скорости звука в потоках ($C^* = 20, 1\sqrt{T^*}$);

 U_1^*, U_2^* – скорости первого и второго потоков $(U_1^* > U_2^*); U_1 = U_1^* / C_1^*; U_2 = U_2^* / C_1^*;$

 T_1^*, T_2^* – температуры первого и второго потоков; $T_1 = 1$; $T_2 = T_2^* / T_1^*$;

 ρ_1^*, ρ_2^* – плотности потоков; ρ_1 = 1 ; ρ_2 = $\rho_2^* \, / \, \rho_1^*$;

$$r = \frac{U_2^*}{U_1^*} = \frac{U_2}{U_1}; s = \frac{\rho_2^*}{\rho_1^*} = \frac{\rho_2}{\rho_1}; \lambda_s = \frac{(1-r)(1+\sqrt{s})}{2(1+r\sqrt{s})};$$

P^{*} – давление (одинаковое для обоих потоков);

*M*₁, *M*₂ – числа Маха первого и второго потоков;

 $M_c = (U_1^* - U_2^*)/(C_1^* + C_2^*)$ – конвективное число Маха.

Таблица 3. Начальные данные

№ расчета	U_1^* , м/с	U_2^* , м/с	r	λ_s	Р*, Па	T_1^*, K	T_2^* , K	M_1	M_2	M_{c}
1	1000	400	0,4	0,43	10^{5}	300	300	2,872	1,1488	0,86
2	1000	600	0,6	0,25	10^{5}	300	300	2,872	1,7232	0,57

No poqueto	U_1	U_2	T_1	T_2	ρ_1	$ ho_2$	Возмущения на входной границе			
J™ pachera							A	α	ω	σ
1	2,872	1,1488	1	1	1	1	0,05	1,987	3,995	1
2	2,872	1,7232	1	1	1	1	0,05	0,971	0,777	1

Таблица 4. Начальные данные (продолжение)

В таблице 5 перечислены такие параметры расчета, как число ячеек расчетной сетки, размер расчетной области, число GPU, безразмерное время окончания расчета, время выполнения расчета. В расчетах использовалась равномерная расчетная сетка.

Таблица 5. Параметры расчета

№ расчета	Число ячеек расчетной сетки, $N_x \times N_y \times N_z$	Размер расчетной области, $L_x \times L_y \times L_z$	Число GPU	Безразмерное время окончания расчета	Время выполне- ния расчета, часов
1	600×3×2700	600,0×3,0×2700,0	12	1600	8
2	500×3×2700	500,0×3,0×2700,0	9	1700	9,3

На рис. 4 показаны мгновенные картины распределений продольной скорости, энтропии и усредненная по времени картина распределения продольной скорости для расчета № 1. На рис. 5 показаны эти же картины для расчета № 2. Все данные приведены в безразмерном виде, используемом в расчете. На рисунках показаны границы блоков, считающихся на разных GPU.

Рис. 4. Мгновенные картины распределений продольной скорости и энтропии и усредненная по времени картина распределения продольной скорости для расчета № 1 (*M_c* = 0,86)

Рис. 5. Мгновенные картины распределений продольной скорости и энтропии и усредненная по времени картина распределения продольной скорости для расчета № 2 (*M_c* = 0,57)

На рис. 6 показаны нормализованные профили усредненных продольных скоростей в сравнении с функцией вида гиперболического тангенса в координатах (x^*, U^*) , где $x^* = (x - x_{0,5})/\delta_{\omega}$; $U^* = (U - U_2)/(U_1 - U_2)$; $x_{0,5}$ – значение x, в котором $U^* = 0,5$; δ_{ω} – толщина завихренности, определяемая по максимальному наклону профиля средней скорости: $\delta_{\omega} = \frac{U_1 - U_2}{[\partial U / \partial x]_{\text{max}}}$. Как и описано, например, в [2,3], наблюдается хорошее соответствие кривых.

Рис. 6. Профили продольной скорости в различных сечениях: слева – расчет № 1 ($M_c = 0,86$), справа – расчет № 2 ($M_c = 0,57$)

На рис. 7 представлена толщина слоя смешения в зависимости от расстояния от входной границы для расчетов № 1 и № 2. Показаны две различные толщины слоя смешения, определяемые из усредненных значений поля скоростей: определенная выше толщина завихренности δ_{ω} , а также δ_b – так называемая 10% толщина по скорости, определяемая как толщина слоя, внутри которого скорость отличается от скоростей начальных потоков более чем на 10% от разницы этих скоростей. Как известно [2-4], толщина турбулентного слоя смешения в некотором сечении пропорциональна расстоянию от точки начала турбулентности до этого сечения. Таким образом, вводится такой важный параметр, как скорость расширения слоя смешения. По линейной части графиков рис. 7 были определены значения $d\delta_b/dz$ скоростей расширения слоя смешения по скорости: 0,0485 для $M_c = 0,86$ и 0,0467 для $M_c = 0,57$.

Рис. 7. Толщины слоя смешения в зависимости от расстояния от входной границы: слева – расчет № 1 ($M_c = 0.86$), справа – расчет № 2 ($M_c = 0.57$)

Известно [2-4], что скорость расширения сверхзвукового слоя смешения меньше, чем при несжимаемом течении. По методике, подробно описанной в [2], на основе 10% толщины по скорости для каждого расчета был вычислен коэффициент Ф, определенный как отношение

скорости расширения сжимаемого слоя смешения к скорости роста несжимаемого слоя смешения при тех же отношениях скоростей и температур:

$$\Phi = \frac{d\delta_b/dz}{(d\delta_b/dz)_i}$$
, где $(d\delta_b/dz)_i$ – скорость роста несжимаемого слоя смешения.

Согласно [2], скорость расширения несжимаемого слоя смешения, определенного по 10% толщине по скорости, вычисляется как $(d\delta_b/dz)_i = E_b\lambda_s$, где $E_b=0,200$.

Таким образом, имеем для расчета № 1 ($M_c = 0.86$) $\Phi = 0.56$, для расчета № 2 ($M_c = 0.57$) $\Phi = 0.93$.

На рис. 8 показано сравнение вычисленных значений коэффициента Ф с экспериментальными данными, взятыми из [2]. Видно хорошее совпадение расчетных данных с экспериментальными.

Рис. 8. Отношение скорости расширения сжимаемого слоя смешения к скорости роста несжимаемого слоя смешения в зависимости от конвективного числа Маха

5. Заключение

Проведена проверка производительности гибридного кластера, в состав которого входят классические процессоры и графические ускорители NVIDIA Tesla K20. В расчетах достигнуто ускорение на графических ускорителях до 23 раз при использовании 12 графических ускорителей по отношению к 12 ядрам обычного процессора.

Прямое моделирование турбулентного смешения двух газодинамических потоков показало возможность расчета при использовании гибридного кластера с соответствием имеющимся результатам других авторов.

Литература

- 1. NVIDIA Corporation. URL: http://www.nvidia.com (дата обращения: 05.02.2014).
- 2. Barone M. F., Oberkampf W. L., Blottner F. G. Validation case study: Prediction of compressible turbulent mixing layer growth rate // AIAA Journal, vol. 44, No.7, pp. 1488–1497, 2006.
- 3. Samimy M., Elliott G.S., Glawe D.D., Reeder M.F., Arnette S.A. Compressible mixing layer with and without particles. Tech. Report No. MEMS-92-101, Ohio State University, 1992.
- 4. Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1974.