Моделирование на суперЭВМ динамики плазменных электронов в ловушке с инверсными магнитными пробками и мультипольными магнитными стенками^{*}

Е.А. Берендеев¹, А.В. Иванов², Г.Г. Лазарева³, А.В. Снытников³

Новосибирский государственный университет¹, Институт ядерной физики СО РАН², Институт вычислительной математики и математической геофизики СО РАН²

Рассмотрена задача моделирования динамики плазменных электронов в ловушке с инверсными магнитными пробками и мультипольными магнитными стенками. Модель построена на основе модифицированного метода частиц в ячейках. Сложный характер исследуемых процессов и необходимая высокая точность потребовали разработки параллельного алгоритма, позволяющего за разумное время рассчитывать траектории миллиардов частиц. Для равномерной и полной загрузки вычислительных узлов выполнена смешанная эйлерово-лагранжевая декомпозиция с учётом динамического шага по времени. Такой подход позволяет достичь высокой масштабируемости параллельного алгоритма и существенно ускорить вычисления.

1. Введение

Наиболее эффективным методом получения мощных нейтральных пучков для установок управляемого термоядерного синтеза является нейтрализация пучков отрицательных ионов в плазменной ловушке-мишени. В ИЯФ СО РАН предложена линейная осесимметричная ловушка с инверсными пробками (с обратным магнитным полем) для нейтрализации пучка отрицательных ионов[1]; для проведения экспериментальных исследований создана ловушка мишенной плазмы длиной 130 см с апертурой 10 см. Проект направлен на решение проблемы минимизации потерь плазмы в широко апертурные проходные отверстия в торцах, в которых находятся инверсные магнитные пробки, а также через цилиндрические мультипольные магнитные стенки ловушки на её вакуумную камеру.

Полноценное исследование физических процессов в плазме может быть проведено только при комплексном подходе, сочетающем как экспериментальные исследования, так и исследования вычислительными методами, адекватно описывающими эти процессы. Для того, чтобы избежать упрощений и получить качественно правильную физическую картину, необходимо построить максимально полную математическую модель.

Общепринято, что хорошей исходной моделью полностью ионизированной плазмы является система уравнений, состоящая из уравнения Больцмана для функций распределения ионов и электронов [2]

$$\frac{\partial f_{\alpha}}{\partial t} + \vec{v} \frac{\partial f_{\alpha}}{\partial \vec{r}} + \vec{F}_{\alpha} \frac{\partial f_{\alpha}}{\partial \vec{p}} = St\{f_{\alpha}\}, \ \vec{F}_{\alpha} = q_{\alpha}(\vec{E} + \frac{1}{c}[\vec{v},(\vec{H} + \vec{H}_{0})]),$$
(1.1)

и системой уравнений Максвелла с самосогласованными электромагнитными полями

$$rot\vec{H} = \frac{4\pi}{c}\vec{j} + \frac{1}{c}\frac{\partial E}{\partial t} = \frac{4\pi}{c}\sum_{\alpha}q_{\alpha}\int f_{\alpha}\vec{v}d\vec{v} + \frac{1}{c}\frac{\partial E}{\partial t},$$
(1.2)

$$rot\vec{E} = -\frac{1}{c}\frac{\partial H}{\partial t},\tag{1.3}$$

$$div\vec{E} = 4\pi\rho = 4\pi\sum_{\alpha} q_{\alpha} \int f_{\alpha}d\vec{v} , \qquad (1.4)$$

^{*} Работа выполнена при поддержке Интеграционного Проекта СО РАН № 105 и грантов РФФИ № 11-01-00178, 11-01-00249, 12-07-00065.

$$div\vec{H} = 0. (1.5)$$

Здесь индексом α обозначается сорт частиц (ионы и электроны); $f_{\alpha}(\vec{r}, \vec{v}, t)$ - функция распределения частиц сорта α ; q_{α} - заряд частицы; \vec{j} - плотность тока ρ - плотность заряда; \vec{E} - напряжённость электрического поля; \vec{H} - напряжённость магнитного поля; \vec{H}_0 - магнитное поле ловушки; $St\{f_{\alpha}\}$ - функция, описывающая следующие физические процессы:

- ионизация атома водорода,
- ионизация и диссоциация молекулы H₂
- диссоциативное возбуждение и диссоциативная рекомбинация H²⁺
- диссоциативная рекомбинация D²⁺
- перезарядка протонов на атомах водорода.

Наиболее универсальным и широко применяемым методом для решения этих уравнений является метод частиц в ячейках [3]. Общая схема этого метода состоит в том, что плазма представляется набором достаточно большого числа модельных частиц, движущихся в соответствии с законами классической механики в самосогласованном электромагнитном поле. При этом каждая модельная частица характеризует движение многих реальных частиц и становится носителем некоторого набора характеристик среды, таких как заряд, масса, импульс, кинетическая энергия и т.д. Для точного описания физических эффектов, происходящих во всей ловушке, необходимо использовать до 10⁹-10¹³ модельных частиц и 10⁶-10⁹ узлов сетки (в двумерном случае). Несмотря на внутренний параллелизм метода частиц – траектории модельных частиц могут быть вычислены независимо друг от друга – построение параллельного масштабируемого алгоритма представляет собой нетривиальную задачу и зависит от особенностей рассматриваемых физических процессов[4].

Одной из таких особенностей является сложная конфигурация магнитного поля в ловушке. На рисунке 1 показана геометрия кольцевых магнитов с железными экранами с магнитным полем, представляющим ловушку мишенной плазмы. При этом магнитное поле ловушки в отдельных областях меняется в пределах величины 50 Гс – 7 кГс.

Рис. 1. Геометрия магнитной системы плазменной ловушки-мишени и силовые линии магнитного поля.

Такая разница в величине магнитного поля (до 2-х порядков) существенно влияет на ларморовский радиус частиц, что в свою очередь приводит к уменьшению временного шага при вычислении траекторий. В настоящей работе также рассматривается проблема адаптивного шага по времени для частиц, находящихся в различных областях ловушки с учётом распределения частиц на вычислительные ядра.

2. Решение основных уравнений

В осесимметричной ловушке с кольцевым магнитным полем отсутствует азимутальный компонент поля, а также отсутствует стационарное азимутальное электрическое поле. Соответственно, в такой ловушке не может возникать нормальный к стенкам стационарный дрейф плазмы в скрещенных полях. Благодаря этому, наиболее оптимальной является двумерная постановка задачи в цилиндрических R-Z координатах, с учётом всех трёх компонент скоростей и импульсов частиц.

2.1 Решение уравнения Больцмана

Решение уравнения Больцмана, используя метод расщепления, можно свести к решению уравнения Власова

$$\frac{\partial f_{\alpha}}{\partial t} + \vec{v} \frac{\partial f_{\alpha}}{\partial \vec{r}} + \vec{F}_{\alpha} \frac{\partial f_{\alpha}}{\partial \vec{p}} = 0, \qquad (2.2.1)$$

и корректировке траекторий частиц с учётом процессов ионизации и диссипации, используя методы Монте-Карло[5].

$$\frac{Df_{\alpha}}{Dt} = St\{f_{\alpha}\}$$
(2.2.2)

Решение уравнения Власова производится в лагранжевых координатах – характеристики этого уравнения описывают движения модельных частиц:

$$\frac{d\vec{p}}{dt} = q_{\alpha}\left(\vec{E} + \frac{1}{c}\left[\vec{v}, \vec{H}\right]\right), \frac{d\vec{r}}{dt} = \vec{v}.$$
(2.2.3)

Здесь \vec{H} включает в себя самосогласованное магнитное поле частиц и внешнее поле ловушки.

Для того, чтобы избежать особенностей у оси симметрии, в настоящей работе используется схема Бориса [6] – решение уравнения Власова в декартовых координатах с последующим локальным преобразованием решения в цилиндрические координаты. В этом случае для определения траектории частиц в декартовых координатах можно использовать следующую схему:

$$\frac{\vec{p}_i^{m+1/2} - \vec{p}_i^{m-1/2}}{\tau} = q_{\alpha} \left(\vec{E}_i^m + \frac{1}{c} \left[\frac{\vec{v}_i^{m+1/2} + \vec{v}_i^{m-1/2}}{2}, \vec{H}_i^m \right] \right),$$
(2.2.4)

Здесь τ - шаг по времени; верхний индекс указывает на момент времени, в который вычисляется искомая функция. Индекс і указывает на номер частицы, для которой производятся вычисления.

2.2 Решение уравнений Максвелла

Уравнения Максвелла решаются в эйлеровых переменных. Необходимые для их решения плотности заряда и плотности тока вычисляются по скоростям и координатам отдельных частиц:

$$\rho(\vec{r},t) = \sum_{j} q_{j} R(\vec{r},\vec{r}_{j}(t)), \qquad (2.2.1)$$

$$\vec{j}(\vec{r},t) = \sum_{j} q_{j} \vec{v}_{j}(t) R(\vec{r},\vec{r}_{j}(t)) .$$
(2.2.2)

Здесь q_j - заряд частицы с номером j; функция $R(\vec{r}, \vec{r}_j(t))$ (функция ядра) характеризует форму, размер частицы и распределение в ней заряда.

В настоящей работе плотности тока и плотности заряда вычисляются по формулам, аналогичным [7], но адаптированным для цилиндрической системы координат. При таком подходе разностный аналог уравнения (1.4) выполняется автоматически, что позволяет существенно ускорить вычисления.

Для нахождения электрических и магнитных полей используется схема, предложенная Лэнгдоном и Лазинским в 1976 году [8], в которой поля определяются из разностных аналогов законов сохранения Фарадея и Ампера:

$$\frac{\vec{H}^{m+1/2} - \vec{H}^{m-1/2}}{\tau} = -c \, rot_h \vec{E}^m \,, \tag{2.2.3}$$

$$\frac{\vec{E}^{m+1} - \vec{E}^m}{\tau} = -4\pi \,\vec{j}^{m+1/2} + c \, rot_h \vec{H}^{m+1/2} \,. \tag{2.2.4}$$

Таким образом, схема решения задачи разбивается на три этапа. На первом (лагранжневом) этапе по схеме (2.2.4) вычисляются скорости и координаты частиц. Здесь же определяются компоненты плотности тока $\vec{j}^{m+1/2}$ и плотности заряда ρ^{m+1} . На втором этапе происходит корректировка траекторий частиц, добавляются и удаляются частицы, в соответствии с учётом процессов ионизации и диссипации, используя методы Монте-Карло. Также удаляются частицы, покинувшие ловушку. На третьем (эйлеровом) этапе по схеме (2.2.3)-(2.2.4) решаются уравнения Максвелла, т.е. определяются значения функций $\vec{H}^{m+1/2}$ и \vec{E}^{m+1} в узлах сетки. Значения электрических и магнитных полей, действующих на каждую частицу, вычисляются с

помощью билинейной интерполяции.

2.3 Адаптивное изменение масс частиц

Поскольку на каждом шаге возможно как рождение новых частиц, так и удаление частиц, покинувших ловушку, необходимо контролировать локальное изменение плотности в каждой ячейке. Проблема заключается в том, что рекомбинирующих реальных частиц существенно меньше, чем реальных частиц, соответствующих одной модельной частице, поэтому удаление или добавление одной модельной частицы может привести к существенному нефизическому изменению плотности в ячейке сетки. Для того, чтобы избежать подобных нежелательных явлений, в настоящей работе предложена модификация метода частиц, основанная на адаптивном изменении массы.

Для каждого сорта частиц вводится константа $s = \frac{q}{m}$ - отношение заряда к массе частицы.

Частица хранит заряд, пропорциональный плотности вещества в данной ячейке. Создание частиц происходит по следующему алгоритму [9]:

- вычисляется полная масса в ячейке
- вычисляется средняя скорость
- добавляются новые частицы с необходимым разбросом по скоростям (средняя скорость равна нулю)
- вычисляется масса одной частицы путём деления полной массы на полное число частиц (и старых и новых). Эта масса присваивается каждой частице в ячейке.
- к случайным скоростям новых частиц добавляется средняя скорость частиц в ячейке.

Удаляются частицы аналогичным образом.

3. Параллельная реализация алгоритма

Каждый временной шаг работы программы состоит из следующих действий:

- расчёт электрического и магнитного поля
- расчёт движения модельных частиц
- вычисления новых значений плотности тока и заряда, вычисление интеграла столкновений
- изменение масс частиц

Время работы всех этих процедур было измерено с помощью профилировщика *gprof*. Результаты профилировки представлены на рисунке 2.

Рис. 2. Время работы основных процедур программ. Сетка 128х128, 200 частиц в ячейке.

Из рисунка 2 видно, что основное время работы программы занимают операции с частицами – расчёт движения частиц, вычисление плотности тока для каждой частицы. Исходя из этого, можно предложить несколько схем распараллеливания - равномерное распределение частиц по процессорам, эйлерова декомпозиция области и распределение частиц по процессорам в зависимости от их положения, смешанная эйлерово-лагранжевая декомпозиция, распределение частиц в зависимости от времени расчёта одного шага на каждом процессоре. В работе [4] показано преимущество эйлерово-лагранжевой декомпозиции области (рисунок 3) в случае постоянного шага по времени.

Рис. 3. Эйлерово-лагранжевая декомпозиция области. Область решения разбита вдоль координаты Y на несколько подобластей, частицы каждой подобласти равномерно распределены между процессорами отдельной группы независимо от координаты. Различные символы, обозначающие частицы: круг, квадрат, треугольник, ромб означают принадлежность частиц к разным группам процессоров, цвет фигуры выделяет принадлежность к разным процессорам в группе. В данном примере используется 16 процессоров

Однако, постоянный временной шаг будет обусловлен максимальной величиной магнитного поля в ловушке. Поскольку разница в величине магнитного поля в разных областях ловушки может составлять до 10², то это ведёт к существенному замедлению работы программы - приходится вычислять плавные траектории частиц в областях малой величины магнитного поля с мелким шагом.

В настоящей работе предлагается использовать динамический шаг для разных областей ловушки. Это решение накладывает следующее ограничение на распределение частиц по процессорам – на каждый процессор приходится порядка

$$\frac{\sum_{i} \frac{N_i}{t_i}}{N_p},\tag{3.1}$$

где N_i - число частиц в ячейке i, t_i - время расчёта траектории одной частицы в ячейке i (одинаковое для всех частиц данной ячейке), N_p - общее число процессоров. Такое распределение соответствует распределению «по времени» (фактически динамическая эйлерова декомпозиция области), описанному А.Н. Андриановым и К.Н. Ефимкиным (ИПМ им. М.В. Келдыша) в работе [10], но с учётом динамического шага по времени. Представив общее число про-

цессоров N_p из формулы (3.1) в виде произведения числа групп N_g процессоров на число процессоров N_{pg} в группе, можно получить следующее число частиц на группу процессоров

$$\frac{\sum_{i} \frac{N_i}{t_i}}{N_g}.$$
(3.2)

Распределив частицы внутри группы равномерно, можно получить эйлерово-лагранжевую декомпозицию области. Это позволяет избежать ситуации, когда на отдельный процессор приходится только несколько ячеек и начинают преобладать межпроцессорные коммуникации.

Поскольку величина магнитного поля ловушки существенно превосходит величину магнитного поля, создаваемого частицами при движении, декомпозицию области можно получить экспериментальным путём.

4. Вычислительный эксперимент

4.1 Эффективность распараллеливания

Поскольку декомпозиция области была получена исходя из вычислительных экспериментов, необходимо проверить масштабируемость полученной реализации алгоритма.

Расчёты проводились на суперкомпьютере «Ломоносов» (МГУ).

На рисунке 4 представлено ускорение при использовании различного количества процессорных ядер. В связи с большим объёмом требуемой оперативной памяти, масштабируемость рассматривается относительно 128 и 1024 процессорных ядер. Использование меньшего количества процессорных ядер не представляет собой интереса с точки зрения реальных задач.

Параметры задачи:

Число узлов 1024х1024, декомпозиция области вдоль направления У на 64 подобласти

Число частиц в ячейке для тестирования масштабируемости относительно 128 процессорных ядер 2500 (Всего 1 310 720 000 частиц)

Число частиц в ячейке для тестирования масштабируемости относительно 1024 процессорных ядер 5000 (Всего 5 242 880 000 частиц)

Рис.4. Полученное ускорение, относительно 128 и 1024 процессорных ядер

Как видно из рисунка 4, полученный алгоритм хорошо масштабируется до 8192 процессорных ядер. Однако, при проведении серии расчётов на таком количестве процессорных ядер критическим фактором становится отказоустойчивость – из-за специфики суперкомпьютера «Ломоносов», отказ или существенное замедление межпроцессорных коммуникаций одного вычислительного узла, связанные с особенностями физической организации суперкомпьютера, приводят к прекращению работы всей программы. Поскольку в расчётах используется порядка 0,5 – 1,5 Тб оперативной памяти, сохранение информации на жёсткий диск в виде «контрольных точек» (как отмечено в [10]) не представляется возможным. В дальнейшем планируется проведение испытаний на других суперкомпьютерах, а также использование графических ускорителей для снятия части нагрузки с универсальных вычислительных ядер.

4.2 Результаты расчётов траекторий плазменных электронов в ловушке

Расчёт траекторий модельных частиц производился при следующих физических и модельных параметрах:

температура плазмы 5 эВ, размер области 6.1см х 1.2 см, плотность электронов (ионов) 2х10¹³ см⁻³, Сетка 4096х128 узлов, общее число модельных частиц 5 242 880 000. Расчёты проводились на суперкомпьютере «Ломоносов» с использованием до 8192 процессорных ядер. Среднее время расчёта одного шага – 0,326 с., среднее время расчёта всей задачи – 24 часа.

На рисунке 5 траектории некоторых электронов плазмы, без учёта влияния ионизации и диссипации.

Рис. 5. Траектории движения электронов мишенной плазмы под воздействием магнитного поля.

Из рисунка 5 видно, что инверсные магнитные пробки на торцах достаточно хорошо удерживают плазму в ловушке, в то же время присутствуют потери плазмы на стенках ловушки и границе инверсных пробок. Для количественного описания потерь плазмы в дальнейшем будет учтено влияние рассеяния электронов плазмы.

4. Заключение

В работе показано, что использование современных суперЭВМ позволяет успешно решить поставленную физическую задачу. Построенный параллельный алгоритм достаточно хорошо масштабируется до десятка тысяч вычислительных ядер и учитывает баланс нагрузки на процессоры. Несмотря на то, что даже в двумерном случае необходимы огромные вычислительные затраты для расчётов траекторий миллиардов модельных частиц, удалось качественно оценить потери плазмы на стенках ловушки и границе инверсных пробок. В вычислительном эксперименте была рассмотрена уменьшенная модель экспериментальной ловушки с соотношением сторон 1:5. В дальнейшем, при увеличении числа используемых процессорных ядер до 100 000 и использовании графических ускорителей, планируется рассматривать уже всю экспериментальную ловушку.

Коллектив авторов выражает благодарность Вшивкову В.А. и Федоруку М.П.

Литература

- 1. Dimov G.I. Feasible scenario of startup and burnup of fusion plasma in ambipolar D-T reactor // Transactions of Fusion Science and Technology 2011. Vol. 59, No.1T, P. 208-210
- 2. Власов А.А. Теория многих частиц. М.-Л., ГИТТЛ, 1950, 348 с.

- 3. Березин Ю.А., Вшивков В.А. Метод частиц в динамике разреженной плазмы. Новосибирск., «Наука», 1980.
- 4. Берендеев Е.А., Ефимова А.А. Реализация эффективных параллельных вычислений при моделировании больших задач физики плазмы методом частиц в ячейках // Мат. междунар. конф. «Параллельные вычислительные технологии», Новосибирск, 2012. С. 380-385.
- 5. Birdsall C.K. Particle-in-Cell Charged-Particle Simulation Plus Monte Carlo Collisions With Neutral Atoms, PIC-MCC// IEEE Trans. Plasma Sci.1991. Vol. 19, No. 2. P. 65-83.
- 6. Boris J.P. Relativistic plasma simulation optimization of a hybrid code // Fourth Conference on numerical Simulation of Plasmas. Washington, 1970. P. 3-67.
- 7. Villasenor J., Buneman O. Rigorous charge conservation for local electromagnetic field solver // Computer Phys. Comm. 1992, Vol. 69. P. 306-316.
- 8. Langdon A.B, Lasinski B.F. Electromagnetic and relativistic plasma simulation models // Meth. Comput. Phys. 1976, Vol. 16. P. 327-366.
- 9. Вшивков В.А., Лазарева Г.Г., Снытников А.В. Адаптивное изменение массы модельных частиц при моделировании тлеющего ВЧ-разряда в Силановой плазме // Вычислительные технологии. 2008, Т. 13., № 1, С. 22-30
- 10. Андрианов А.Н., Ефимкин К.Н. Подход к параллельной реализации метода частиц в ячей-ках // Препринт ИПМ им. М.В.Келдыша №9 за 2009 г., Москва.