Алгоритмы решения обратных задач гравиметрии о нахождении поверхностей раздела сред на многопроцессорных вычислительных системах^{*}

Е.Н. Акимова^{1,2}, В.В. Васин^{1,2}, В.Е. Мисилов¹

Институт математики и механики УрО РАН¹, Уральский федеральный университет²

Для решения трехмерной структурной обратной задачи гравиметрии о нахождении поверхностей раздела в многослойной среде предложены новые линеаризованные итерационные методы градиентного типа (наискорейшего спуска и минимальной ошибки) с переменными демпфирующими множителями. На основе методов типа Ньютона, Левенберга–Марквардта и линеаризованных методов градиентного типа решения задач гравиметрии для двухслойной и трехслойной среды разработаны эффективные параллельные алгоритмы, численно реализованные на многопроцессорных системах различного типа: многопроцессорном комплексе MBC-ИММ, много-ядерном процессоре Intel и графических процессорах NVIDIA, входящими в состав суперкомпьютера «Уран». Проведено исследование эффективности и оптимизация параллельных алгоритмов. Параллельные алгоритмы встроены в разработанную систему удаленных вычислений «Специализированный Веб-портал решения задач на многопроцессорных вычислителях».

1. Введение

Важнейшими задачами исследования структуры земной коры являются обратные задачи гравиметрии о восстановлении поверхностей раздела между средами в двухслойной и многослойной среде [1, 2]. Задачи гравиметрии описываются нелинейными интегральными уравнениями Фредгольма первого рода, т.е. являются существенно некорректными задачами. При разработке методов решения задач используются идеи итеративной регуляризации [3]. После дискретизации задачи сводятся к системам нелинейных уравнений большой размерности (до нескольких сотен тысяч). Необходимость повышения точности результатов решения задач, в частности, использование более мелких сеток, существенно увеличивает время вычислений.

Одним из путей уменьшения времени расчетов и повышения эффективности решения геофизических задач является распараллеливание алгоритмов и использование многопроцессорных вычислительных систем (MBC). В Институте математики и механики УрО РАН (г. Екатеринбург) установлены суперкомпьютеры MBC-1000, MBC-ИММ и «Уран», которые успешно используются при решении прикладных задач.

В настоящее время для решения прикладных задач активно используются многоядерные гибридные вычислительные системы с графическими процессорами (видеокартами), которые по сравнению с суперкомпьютерами представляют собой более дешевую многопроцессорную технику с низким энергопотреблением. Установленный в ИММ УрО РАН суперкомпьютер «Уран» включает в себя гибридный вычислительный кластер на основе видеоускорителей NVIDIA Tesla и многоядерных CPU.

В данной работе предложены новые линеаризованные итерационные методы градиентного типа (наискорейшего спуска и минимальной ошибки) с переменными демпфирующими множителями для решения трехмерной нелинейной обратной задачи гравиметрии о восстановлении поверхностей раздела в многослойной среде. На основе методов типа Ньютона, Левенберга– Марквардта и линеаризованных методов градиентного типа решения задач гравиметрии для двухслойной и трехслойной среды разработаны эффективные параллельные алгоритмы, численно реализованные на многопроцессорных вычислительных системах различного типа: многопроцессорном комплексе MBC-ИММ, графических процессорах NVIDIA и многоядерном

^{*} Работа выполнена при поддержке УрО РАН в рамках программ фундаментальных исследований Президиума РАН № 15 (проект 12-П-1-1023) и № 18 (проект 12-П-15-2019) и при поддержке РФФИ (проект 12-01-00105-а).

процессоре Intel. Проведено исследование эффективности и оптимизация параллельных алгоритмов. Решены задачи с модельными и реальными данными. Параллельные алгоритмы встроены в разработанную систему удаленных вычислений «Специализированный Веб-портал решения задач на многопроцессорных вычислителях».

2. Алгоритмы решения структурных обратных задач гравиметрии о нахождении границ раздела сред постоянной плотности

2.1 Обратная задача гравиметрии о нахождении поверхности раздела в двухслойной среде

Рассматривается трехмерная структурная обратная задача гравиметрии о восстановлении поверхности раздела между средами по известному скачку плотности и гравитационному полю, измеренному на некоторой площади земной поверхности.

Предполагается, что нижнее полупространство состоит из двух слоев постоянной плотности, разделенных искомой поверхностью *S* (рис. 1).

Рис. 1. Модель двухслойной среды

В предположении, что гравитационная аномалия создана отклонением искомой поверхности S от горизонтальной плоскости z = H (ось z направлена вниз), в декартовой системе координат функция z = z(x, y), описывающая искомую поверхность раздела, удовлетворяет нелинейному двумерному интегральному уравнению Фредгольма первого рода

$$A[z] = f \Delta \sigma \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \left\{ \frac{1}{\left[\left(x - x' \right)^2 + \left(y - y' \right)^2 + z^2(x', y') \right]^{\frac{1}{2}}} - \frac{1}{\left[\left(x - x' \right)^2 + \left(y - y' \right)^2 + H^2 \right]^{\frac{1}{2}}} \right\} dx' dy' = G(x, y),$$
(1)

где f – гравитационная постоянная, $\Delta \sigma$ – скачок плотности на границе раздела сред, G(x, y) – аномальное гравитационное поле, z = H – асимптотическая плоскость для данной границы раздела, т.е. $\lim_{\substack{|x|\to\infty\\ |y|\to\infty}} |z(x, y) - H| = 0.$

Предварительная обработка гравитационных данных, связанная с выделением аномального поля из общих гравитационных данных, выполняется по методике, предложенной в работе [4].

Обратная задача гравиметрии является существенно некорректной задачей, решение которой обладает сильной чувствительностью к погрешности правой части, полученной в результате измерений и предварительной обработки геофизических данных. Поэтому при ее решении используются методы итеративной регуляризации. После дискретизации уравнения (1) на сетке $n = M \times N$, где задана G(x, y), и аппроксимации интегрального оператора по квадратурным формулам имеем систему нелинейных уравнений

$$A_n[z] = F_n. \tag{2}$$

2.2 Методы решения обратной задачи гравиметрии для двухслойной среды

Для решения системы нелинейных уравнений (2) используется методы типа Ньютона и Гаусса-Ньютона в регуляризованном варианте:

итеративно регуляризованный метод Ньютона [5]

$$z^{k+1} = z^k - \left[A'_n\left(z^k\right) + \alpha_k I\right]^{-1} \left[A_n\left(z^k\right) + \alpha_k z^k - F_n\right];\tag{3}$$

модифицированный метод Ньютона

$$z^{k+1} = z^{k} - \left[A'_{n}\left(z^{0}\right) + \alpha_{k}I\right]^{-1} \left[A_{n}\left(z^{k}\right) + \alpha_{k}z^{k} - F_{n}\right];$$
(4)

метод Левенберга-Марквардта (МЛМ) [3, 6]

$$z^{k+1} = z^{k} - \left[\left(A'_{n} \left(z^{k} \right) \right)^{T} A'_{n} \left(z^{k} \right) + \alpha_{k} I \right]^{-1} \left(A'_{n} \left(z^{k} \right) \right)^{T} \left(A_{n} \left(z^{k} \right) - F_{n} \right);$$
(5)

либо модифицированный метод Левенберга-Марквардта (ММЛМ) [7]

$$z^{k+1} = z^{k} - \left[\left(A'_{n} \left(z^{0} \right) \right)^{T} A'_{n} \left(z^{0} \right) + \alpha_{k} I \right]^{-1} \left(A'_{n} \left(z^{k} \right) \right)^{T} \left(A_{n} \left(z^{k} \right) - F_{n} \right).$$
(6)

Здесь $A_n(z^k)$ и F_n – конечномерные аппроксимации интегрального оператора и правой части в уравнении (1), $A'_n(z^k)$ – производная оператора A в точке z^k , I – единичный оператор, α_k – последовательность положительных параметров регуляризации, k – номер итерации.

Нахождение очередного приближения z^{k+1} метода Ньютона (3) либо его модифицированного варианта (4) сводится к решению СЛАУ

$$A_{n}^{k} z^{k+1} = F_{n}^{k}, (7)$$

где $A_n^{\ k} = A_n'(z^k) + \alpha_k I$ – плохо обусловленная несимметричная заполненная $n \times n$ матрица для метода (3) либо симметричная $n \times n$ матрица $A_n^{\ k} = A_n'(z^0) + \alpha_k I$ для метода (4). Вектор $F_n^{\ k}$ размерности n имеет вид $F_n^{\ k} = A_n^{\ k} z^k - (A_n(z^k) + \alpha_k z^k - F_n).$

Заметим, что в общем случае решения задачи методом Ньютона предварительно СЛАУ (7) приводится к виду с симметричной матрицей

$$D^{k} z^{k+1} \equiv \left[(A_{n}^{k})^{T} A_{n}^{k} + \alpha'_{k} I \right] z^{k+1} = (A_{n}^{k})^{T} F_{n}^{k} \equiv b,$$
(8)

где $(A_n^k)^T$ – транспонированная матрица, α'_k – параметры регуляризации.

Нахождение очередного приближения z^{k+1} метода Левенберга–Марквардта (5) либо его модифицированного варианта (6) сводится к решению СЛАУ

$$\tilde{A}_n^{\ k} z^{k+1} = \tilde{F}_n^{\ k},\tag{9}$$

с симметричной положительно-определенной $n \times n$ матрицей $\tilde{A}_n^k = \left(A'_n\left(z^k\right)\right)^T A'_n\left(z^k\right) + \alpha_k I$ либо $\tilde{A}_n^k = \left(A'_n\left(z^0\right)\right)^T A'_n\left(z^0\right) + \alpha_k I$ и вектором правой части размерности n вида $\tilde{F}_n^k = A_n^k z^k - \left(A'_n\left(z^k\right)\right)^T \left(A_n\left(z^k\right) - F_n\right).$

Условием останова итерационных процессов (3)–(6) является выполнение условия $||A_n z - F_n|| / ||F_n|| < \varepsilon$ при достаточно малом $\varepsilon > 0$.

На каждом шаге метода Ньютона, метода Левенберга–Марквардта и их модифицированных вариантов для решения СЛАУ используются следующие итерационные методы градиентного типа:

метод простой итерации (МПИ)

$$z^{k+1} = z^{k} - \frac{1}{\lambda_{\max}} [(B + \alpha E) z^{k} - b],$$
(10)

где λ_{\max} – максимальное собственное значение матрицы $B + \alpha E$; метод минимальных невязок (ММН)

$$z^{k+1} = z^{k} - \frac{(B(Bz^{k} - b), Bz^{k} - b)}{\left\| B(Bz^{k} - b) \right\|^{2}} (Bz^{k} - b),$$
(11)

где методы (10) и (11) применяются для $B = B^T \ge 0$;

метод минимальной ошибки (ММО)

$$z^{k+1} = z^{k} - \frac{\left\|Bz^{k} - b\right\|^{2}}{\left\|B^{T}(Bz^{k} - b)\right\|^{2}} B^{T}(Bz^{k} - b);$$
(12)

метод наискорейшего спуска (МНС)

$$z^{k+1} = z^{k} - \frac{\left\|B^{T}(Bz^{k}-b)\right\|^{2}}{\left\|BB^{T}(Bz^{k}-b)\right\|^{2}}B^{T}(Bz^{k}-b);$$
(13)

где *В* – матрица СЛАУ, возникающая при реализации методов (3)–(6) на каждом шаге; либо метод сопряженных градиентов (МСГ) в регуляризованном варианте

$$z^{k+1} = z^{k} - \gamma_{k} (D^{k} z^{k} - b) + \beta_{k} (z^{k} - z^{k-1}), \qquad (14)$$

где γ_k и β_k вычисляются по известным формулам [8].

Условием останова итерационных процессов (10)–(14) является условие $||Bz-b|| / ||b|| < \varepsilon$ при достаточно малом ε .

2.2 Обратная задача гравиметрии о нахождении поверхностей раздела в многослойной среде и методы ее решения

Предполагается, что нижнее полупространство состоит из нескольких слоев постоянной плотности, разделенных искомыми поверхностями S_l , где L – число границ раздела (рис. 2). Гравитационный эффект от такого полупространства равен сумме гравитационных эффектов от всех поверхностей раздела.

Рис. 2. Модель многослойной среды

Пусть поверхности раздела задаются уравнениями $z_l = z_l(x, y)$, скачки плотности на них равны $\Delta \sigma_l$, поверхности имеют горизонтальные асимптотические плоскости $z_l = H_l$, т.е. $\lim_{|x| \to \infty} |z_l(x, y) - H_l| = 0.$

$$\begin{array}{c} |x| \to \infty \\ |y| \to \infty \end{array}$$

Поле от полупространства с точностью до постоянного слагаемого равно [2]

$$A(z) \equiv f \sum_{l=1}^{L} \Delta \sigma_{l} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\frac{1}{\sqrt{(x-x')^{2} + (y-y')^{2} + z_{l}^{2}(x,y)}} - \frac{1}{\sqrt{(x-x')^{2} + (y-y')^{2} + H_{l}^{2}}} \right) dx \, dy = \Delta g(x',y',0),$$
(15)

где *f* – гравитационная постоянная, *L* – число границ раздела.

После дискретизации уравнения (15) на сетке $n = M \times N$, где задана правая часть $\Delta g(x, y)$, и аппроксимации интегрального оператора A(z) по квадратурным формулам имеем вектор правой части F(x, y) размерности $M \times N$, результирующий вектор решения $z(x, y) = [z_1(x, y), ..., z_L(x, y)]$ размерности $L \times M \times N$, матрицу производной оператора $A'(z^k)^T$ размерности $L \times M^2 \times N^2$ и результирующую систему нелинейных уравнений

$$\tilde{A}_n[z] = \tilde{F}_n. \tag{16}$$

Задача является недоопределенной, т.к. по заданной функции $\Delta g(x, y)$ мы пытаемся найти несколько неизвестных функций $z_l = z_l(x, y)$, что влечет неединственность решения.

В этом случае требуется либо находить близкое начальное приближение к решению, либо использовать адаптивные методы, которые за счет подходящей настройки параметров переводят итерации в область локальной сходимости.

Для решении системы нелинейных уравнений (2), возникающей после дискретизации уравнения (1) для двухслойной среды, кроме итеративно регуляризованных методов Ньютона и Левенберга–Марквардта, успешно использовались линеаризованные методы градиентного типа с дополнительными демпфирующими множителями γ , предложенными в работе [9]: например, метод наискорейшего спуска в этом случае имеет вид:

$$z^{k+1} = z^{k} - \gamma \frac{\left\|S(z^{k})\right\|^{2}}{\left\|A'(z^{k})S(z^{k})\right\|^{2}} S(z^{k}) \equiv T(z^{k}), \quad S(z^{k}) = A'(z^{k})^{T} (A(z^{k}) - F); \quad (17)$$

В работе [9] (см. также [3, 10]) показано, что при $\gamma < \gamma_0$, где γ_0 определяется исходными данными задачи, оператор шага $T(z^k)$ в процессе (17) являются псевдосжимающим, что влечет строго монотонную сходимость итераций

$$||z^{k+1} - z||^2 \le ||z^k - z||^2 - \nu ||z^{k+1} - z^k||, \quad \nu > 0.$$

Введение дополнительного множителя $0 < \gamma < \gamma_0 < 1$ позволяет расширить область допустимых начальных приближений и на первых шагах процесса перевести итерационные точки в область локальной монотонной сходимости, тогда как при $\gamma = 1$ процесс может расходиться (см. [10]).

В настоящей работе для решении системы нелинейных уравнений (16), возникающей после дискретизации уравнения (15) решения задачи гравиметрии в многослойной среде, предлагаются следующие линеаризованные итерационные методы градиентного типа с переменными демпфирующими множителями γ_i :

линеаризованный метод наискорейшего спуска (ЛМНС)

$$z_{i}^{k+1} = z_{i}^{k} - \gamma_{i} \frac{\left\|S(z^{k})\right\|^{2}}{\left\|A'(z^{k})S(z^{k})\right\|^{2}} S_{i}(z^{k}), \quad S(z^{k}) = A'(z^{k})^{T} (A(z^{k}) - F);$$
(18)

либо линеаризованный метод минимальной ошибки (ЛММО)

$$z_{i}^{k+1} = z_{i}^{k} - \gamma_{i} \frac{\left\|A(z^{k}) - F\right\|^{2}}{\left\|S(z^{k})\right\|^{2}} S_{i}(z^{k}),$$
(19)

где $\gamma_i \in [0,1], z_i - i$ - компонента результирующего вектора z(x, y); k – номер итерации.

Демпфирующие множители γ_i , зависящие от номера компоненты вектора z^k , выбираются специальным образом путем нормировки аномальных полей для каждой границы раздела, выделенных из общего гравитационного поля $\Delta g(x, y)$.

В качестве начального приближения используются горизонтальные асимптотические плоскости $z_l^0 = H_l$ (l = 1, ..., L).

Условием останова итерационных процессов (18)–(19) является выполнение условия $||A(z) - F|| / ||F|| < \varepsilon$ при достаточно малом ε .

3. Распараллеливание и численная реализация итерационных методов решения обратных задач

Параллельные алгоритмы решения нелинейной обратной задачи гравиметрии о восстановлении поверхностей раздела для трехслойной среды на основе линеаризованных методов градиентного типа, а также параллельные алгоритмы решения нелинейной обратной задачи гравиметрии о восстановлении поверхности раздела для двухслойной среды на основе методов градиентного типа, итеративно регуляризованных методов Ньютона и Левенберга–Марквардта и их модифицированных вариантов численно реализованы на многопроцессорном комплексе кластерного типа с распределенной памятью MBC-ИММ, многоядерном процессоре Intel и графических процессорах NVIDIA, входящими в состав суперкомпьютера «Уран» (ИММ УрО РАН). Параллельные алгоритмы реализованы на MBC-ИММ и «Уран» с помощью технологии MPI, на графических процессорах NVIDIA с помощью технологии CUDA и библиотеки CUBLAS, на многоядерном процессоре с помощью технологии OpenMP.

При реализации на MBC и многоядерном процессоре распараллеливание итерационных методов градиентного типа, методов типа Ньютона и Левенберга–Марквардта основано на разбиении матрицы A СЛАУ горизонтальными полосами на m блоков, а вектора решения z и вектора правой части b СЛАУ на m частей так, что $n = m \times L$, где n – размерность системы уравнений, m – число процессоров, L – число строк матрицы в блоке (рис. 3). На текущей итерации каждый из m процессоров вычисляет свою часть вектора решения. В случае умножения матрицы A на вектор z каждый из m процессоров умножает свою часть строк матрицы A на вектор z. В случае матричного умножения $A^T A$ каждый из m процессоров умножает свою часть строк матрицы A по транспонированной матрицы A^T на всю матрицу A. Ноst-процессор (ведущий) отвечает за пересылки данных и также вычисляет свою часть вектора решения.

Рис. 3. Схема распределения данных по процессорам

Заметим, что при выполнении векторно-матричных операций в итерационных методах с помощью технологии OpenMP создаются параллельные потоки и эффективно распределяется работа между ними.

При реализации на графических процессорах NVIDIA распараллеливание линеаризованных итерационных методов наискорейшего спуска и минимальной ошибки решения нелинейной задачи гравиметрии для трехслойной среды основано на принципах распараллеливания итерационных методов решения линейной задачи гравиметрии, описанных в работе [11], в сочетании с использованием библиотеки CUBLAS.

Для оптимизации работы с памятью при вычислениях используется следующий прием. Для сеток довольно большой размерности, когда данные могут не входить в память видеокарты, наилучшим по быстродействию оказывается метод вычисления элементов матрицы A' «на лету», т.е. вычисление значения элемента матрицы происходит в момент обращения к этому элементу без сохранения его в память видеокарты. Это позволяет существенно снизить количество обращений к памяти видеокарты и заметно ускорить процесс вычислений по сравнению с хра-

нением матрицы A' в памяти Host-процессора и порционной загрузкой в видеоускоритель для вычислений.

Параллельные алгоритмы решения структурных обратных задач гравиметрии о восстановлении поверхностей раздела сред встроены в разработанную систему удаленных вычислений «Специализированный Веб-портал решения задач на многопроцессорных вычислителях» [12], установленный в Отделе некорректных задач анализа и приложений Института математики и механики УрО РАН. В настоящее время на Веб-портале предусмотрен запуск программ для решения задач гравиметрии на MBC-ИММ и суперкомпьютере «Уран», включающем в себя вычислительный кластер на основе видеоускорителей NVIDIA Tesla.

МВС-ИММ состоит из 128 AMD Opteron (2.6 Ггц), интерфейса GiEthernet и 256 Гб ОП. Суперкомпьютер «Уран» состоит из 1784 Хеоп (3.0 ГГц), интерфейса GiEthernet, 5328 Гб ОП и 30 вычислительных узлов с NVIDIA Tesla, содержащих по 8 GPU и по 2 шестиядерных CPU.

Специализированный Веб-портал предоставляет возможность пользователю через Вебинтерфейс выбирать тип многопроцессорного вычислителя с указанием числа процессорных узлов (MBC, NVIDIA Tesla, Multi-Core CPU), вид задачи и метод ее решения, загружать входные данные, получать выходные данные и графическое изображение результатов решения с помощью графических пакетов Surfer и gnuplot. Для каждой задачи выводится время счета.

4. Результаты численных экспериментов

Результаты численных расчетов решения задачи гравиметрии с реальными данными для двухслойной среды на многопроцессорных системах приводятся в работах [12, 13].

Здесь мы рассмотрим решение обратной задачи гравиметрии в трехслойной среде, разделенной двумя искомыми поверхностями S_1 и S_2 с модельными данными на площади S, имеющей размеры 90×100 км². Суммарное гравитационное поле на площади S находилось путем решения прямой задачи гравиметрии по формуле (15) с известными точными решениями $z_1(x, y)$ и $z_2(x, y)$:

$$z_1(x, y) = 5 - 2e^{-(x/10-3.5)^2 - (y/10-2.5)^2} - 3e^{-(x/10-5.5)^2 - (y/10-4.5)^2};$$

$$z_2(x, y) = 20 - 10e^{-(x/25-2.2)^2 - (y/25-1.75)^2}.$$

Расстояния до асимптотических плоскостей принимались равными $H_1 = 5 \text{ км}$ и $H_2 = 20 \text{ км}$. Соответствующие скачки плотности принимались равными $\Delta \sigma_1 = 0.25 \text{ г/см}^3$ и $\Delta \sigma_2 = 0.3 \text{ г/см}^3$, гравитационная постоянная $f = 6.67 \cdot 10^{-8} \text{ см}^3/\text{г} \cdot \text{c}^2$. При этом шаги сетки составили $\Delta x = \Delta y = 1.0 \text{ км}$.

После дискретизации уравнения (15) на сетке имеем вектор правой части F(x, y) размерности 9000, результирующий вектор решения $z(x, y) = [z_1(x, y), z_2(x, y)]$ размерности 18000, матрицу производной оператора $A'(z^k)^T$ размерности 18000×9000 и систему нелинейных уравнений вида (16).

Задача решалась на MBC-ИММ с помощью технологии MPI и вычислительном кластере NVIDIA Tesla с применением технологии OpenMP и технологии CUDA.

Для решения задачи использовались параллельные итерационные линеаризованные методы наискорейшего спуска и минимальной ошибки с демпфирующими множителями. Переменные множители находились путем специальной нормировки гравитационных полей для каждой поверхности раздела S_1 и S_2 , выделенных из суммарного гравитационного поля Δg по методике [4].

На рис. 4 изображены точные решения структурной обратной задачи гравиметрии в трехслойной среде. На рис. 5 изображено суммарное гравитационное поле Δg , полученное путем решения прямой задачи гравиметрии для области *S* по формуле (15). На рис. 6 изображены восстановленные поверхности раздела. При решении задачи методами ЛМНС и ЛММО относительные нормы невязок $\varepsilon = ||A(z) - F|| / ||F||$ по сравнению с начальной нормой невязки $\varepsilon_0 = 1$ уменьшились на три порядка и составили $\varepsilon_{JMHC} \approx 0.005$ и $\varepsilon_{JMMO} \approx 0.0055$ (100 итераций). Относительные погрешности $\delta_i = ||z_i^T - z_i^{np}|| / ||z_i^T|| \cdot 100\%$ для решений $z_1(x, y)$ и $z_2(x, y)$ составили 4.5 % и 3 %, соответственно.

Рис. 4. Точные решения $z_1(x, y)$ и $z_2(x, y)$ для трехслойной среды

Рис. 5. Суммарное гравитационное поле

Рис. 6. Приближенные решения $\hat{z}_1(x, y)$ и $\hat{z}_2(x, y)$ для трехслойной среды

В табл. 1 и 2 приводятся времена решения нелинейной задачи гравиметрии для трехслойной среды на многопроцессорном комплексе MBC-ИММ, графических процессорах NVIDIA Tesla и многоядерном процессоре Intel Xeon линеаризованными методами наискорейшего спуска (100 итераций) и минимальной ошибки (100 итераций).

Для сравнения времени счета решения задачи введем коэффициенты ускорения и эффективности параллельных алгоритмов

$$S_m = T_1 / T_m, \quad E_m = S_m / m, \quad S = T_1 / T_2,$$

где T_m – время выполнения параллельного алгоритма на MBC-ИММ либо на многоядерном процессоре с числом процессоров или ядер m (m > 1), T_1 – время выполнения последовательного алгоритма на одном процессоре либо на одном ядре, T_2 – время решения задачи на видеоускорителе. T_m представляет собой совокупность чистого времени счета и накладных расходов.

Вычислитель	Время T_m , мин.	Ускорение S _т либо S	Эффективность E_m
Intel Xeon (1 ядро)	18.94	—	—
Intel Xeon (2 ядра)	9.55	1.98	0.99
Intel Xeon (3 ядра)	6.52	2.90	0.97
Intel Xeon (4 ядра)	4.88	3.88	0.97
Intel Xeon (5 ядер)	3.98	4.76	0.95
Intel Xeon (6 ядер)	3.41	5.55	0.92
Intel Xeon (7 ядер)	3.14	6.03	0.86
NVIDIA Tesla (448 ядер)	0.49	38.7	—

Таблица 1. Времена решения задачи гравиметрии линеаризованным методом наискорейшего спуска

Таблица 2. Времена решения задачи гравиметрии линеаризованным методом минимальной ошибки

Вычислитель	Время T_m , мин.	Ускорение S _т либо S	Эффективность Е _т
Intel Xeon (1 ядро)	18.57	_	_
Intel Xeon (2 ядра)	9.31	1.99	0.99
Intel Xeon (3 ядра)	6.40	2.90	0.97
Intel Xeon (4 ядра)	4.80	3.87	0.97
Intel Xeon (5 ядер)	3.92	4.74	0.95
Intel Xeon (6 ядер)	3.37	5.51	0.92
Intel Xeon (7 ядер)	3.11	5.97	0.85
NVIDIA Tesla (448 ядер)	0.46	40.4	_
МВС-ИММ (1 проц.)	19.98	_	_
МВС-ИММ (2 проц.)	10.98	1.82	0.91
МВС-ИММ (3 проц.)	8.02	2.49	0.83
МВС-ИММ (5 проц.)	5.57	3.58	0.71
МВС-ИММ (8 проц.)	5.15	3.87	0.48

5. Заключение

Для решения трехмерной структурной обратной задачи гравиметрии о восстановлении поверхностей раздела в многослойной среде предложены новые линеаризованные методы наискорейшего спуска и минимальной ошибки с переменными демпфирующими множителями. На основе итеративно регуляризованных методов типа Ньютона, Левенберга–Марквардта и линеаризованных методов градиентного типа для решения задач гравиметрии для двухслойной и трехслойной среды разработаны параллельные алгоритмы, численно реализованные на многопроцессорных вычислительных системах различного типа: многопроцессорном комплексе MBC-ИММ, графических процессорах NVIDIA Tesla и многоядерном процессоре Intel Xeon с высокой эффективностью распараллеливания с использованием новых вычислительных технологий. Проведено исследование эффективности и оптимизация параллельных алгоритмов. Решены модельные задачи для трехслойной среды. Параллельные алгоритмы встроены в разработанную систему удаленных вычислений «Специализированный Веб-портал решения задач на многопроцессорных вычислителях».

Результаты вычислений показывают, что использование линеаризованных итерационных методов градиентного типа при решении структурных обратных задач гравиметрии для двухслойной и трехслойной среды позволяет получать корректные решения. Применение параллельных алгоритмов при решении обратных задач гравиметрии на многопроцессорных вычислительных системах существенно уменьшает время счета.

Литература

- 1. Нумеров Б.В. Интерпретация гравитационных наблюдений в случае одной контактной поверхности // ДАН СССР. 1930. № 21. С. 569–574.
- 2. Мартышко П.С., Ладовский И.В., Цидаев А.Г. Построение региональных геофизических моделей на основе комплексной интерпретации гравитационных и сейсмических данных // Физика земли. 2010. № 11. С. 23–35.
- 3. Васин В.В., Еремин И.И. Операторы и итерационные процессы фейеровского типа. Теория и приложения. Екатеринбург: УрО РАН. 2005.
- 4. Мартышко П.С., Пруткин И.Л. Технология разделения источников гравитационного поля по глубине // Геофизический журнал. 2003. Т. 25. № 3. С. 159–68.
- 5. Bakushinsky A., Goncharsky A. Ill-Posed Problems: Theory and Applications. London: Kluwer Akad. Publ. 1994.
- 6. Hanke M. A regularization Levenberg–Maquardt scheme with applications to inverse groundwater filtration problems // Inverse Problems. 1997. Vol. 13. P. 79–95.
- 7. Васин В.В. Метод Левенберга–Марквардта для аппроксимации решений нерегулярных операторных уравнений // Автоматика и телемеханика. 2012. № 3. С. 28–38.
- 8. Фаддеев В.К., Фаддеева В.Н. Вычислительные методы линейной алгебры. М.: Гос. издат. физ.-мат. литературы. 1963.
- 9. Васин В.В. О сходимости методов градиентного типа для нелинейных уравнений // ДАН. 1998. Т. 359. № 1. С. 5–7.
- Vasin V.V., Skorik G.G. Iterative processes of gradient type with applications to gravimetry and magnetometry inverse problems // J. Inverse and Ill-Posed Problems. 2010. Vol. 18. № 8. P. 855–876.
- 11. Акимова Е.Н., Белоусов Д.В. Распараллеливание алгоритмов решения линейной обратной задачи гравиметрии на MBC-1000 и графических процессорах // Вестник ННГУ. 2010. № 5. Ч. 1. С. 193–200.
- Акимова Е.Н., Белоусов Д.В., Мисилов В.Е. Алгоритмы решения обратных геофизических задач на многопроцессорных вычислительных системах // Труды межд. конференции «Параллельные вычислительные технологии», Новосибирск, 26–30 март. 2012 г. Челябинск: ЮУрГУ, 2012. С. 28–41.
- 13. Акимова Е.Н. Параллельные алгоритмы решения обратных задач гравиметрии и магнитометрии на MBC-1000 // Вестник ННГУ. 2009. № 4. С. 181–189.