
*Other brands and names are the property of their respective owners.

Intel MKL Poisson Library for scalable and efficient solution
of elliptic problems with separable variables

A. Kalinkin, A. Kuzmin

Intel Corporation

Intel®MKL Poisson Library is a collection of routines that combine discrete Fourier transforms
and LU decomposition to solve Laplace, Poisson, and Helmholtz mesh problems with separable
variables. The routines provide an approximate solution of some two- and three-dimensional
problems with an arbitrary combination of boundary conditions, Dirichlet, Neumann, or
periodic, in Cartesian or spherical coordinate systems. Intel MKL®Poisson Library is optimized
for modern Intel multi-core processors and demonstrates excellent performance and scalability
compared to similar solvers.

1. Introduction

Among elliptic boundary value problems, the class of problems with separable variables can be
solved fast and directly. Elliptic problems with separable variables usually assume that the computational
domains are simple e.g., parallelepiped or sphere, and constant coefficients [1]. This kind of problems can
serve to generate preconditioners in iterative procedures for more complex methods. They can also be
used in low-accuracy models similar to the ones used in Numerical Weather Simulations.

Intel® MKL Poisson Library enables solving Laplace, Poisson, and Helmholtz mesh problems with
separable variables. The routines provide an approximate solution of some two- and three-dimensional
problems with an arbitrary combination of boundary conditions, Dirichlet, Neumann, or periodic, in Car-
tesian or spherical coordinate systems.

The problems with the separable variables can be suboptimal in the sense that they require slightly
more arithmetic operations (up to logarithmic factor) than the number of unknowns to compute the solu-
tion to the problem. This statement is true if, for example, the sizes of the discretized problems are powers
of 2.

Computational Mathematics suggests that we take into consideration not only arithmetic operations,
but also the cost of memory operations as well. Modern computers can perform computations at a very
high speed, while lacking the ability to deliver data to the computational units. Keeping in mind that a
memory operation can easily be dozen to hundred times slower than an arithmetic one, a computationally
optimal algorithm could compute the solution slower than memory optimal algorithm.

The recent developments in processor industry resulted in multicore processors become standard pro-
cessors not only for powerful clusters, but also for home computers and laptops. Therefore, the algorithm
can also be non-optimal from the parallelization point of view. Optimality here can be understood in terms
of the number of synchronization points and/or in terms of the amount of data that needs to be transferred
between different cores.

In summary, the modern computational algorithm should focus on 3 key aspects, namely, paralleliza-
tion, memory operations, and arithmetic costs.

This work extends previously published paper [2] with new routines and performance comparison.
The purpose of this article is to demonstrate on a simple 3D problem with separable variables that

taking into account modern model the solution can be computed efficiently and fast. This would also help
developers to compute solution to the problem with separable variables really negligible with respect to
other computations. To complete our goal, we will evaluate software provided by Intel Corporation. In
particular, we focus on the comparison (where possible) of NAG* SMP Library provided at [3] and Intel®
MKL provided at [4].

336

2. Problem Statement

We are going to use the following notation for boundaries of a parallelepipedal domain ax < x < bx, ay
< y < by, az < z < bz in Cartesian space:

bd_ax = {x = ax, ay ≤ y ≤ by, az ≤ z ≤ bz }, bd_bx = {x = bx, ay ≤ y ≤ by, az ≤ z ≤ bz }

bd_ay = {ax ≤ x ≤ bx, y = ay, az ≤ z ≤ bz }, bd_by = {ax ≤ x ≤ bx, y = by, az ≤ z ≤ bz }

bd_az = {ax ≤ x ≤ bx, ay ≤ y ≤ by, z = az }, bd_bz = {ax ≤ x ≤ bx, ay ≤ y ≤ by,, z = bz,}.

The wildcard "*" may stand for any of the symbols ax, bx, ay, by, az, bz so that bd_* denotes any of the
above boundaries.

The 2D Helmholtz problem is to find an approximate solution of the Helmholtz equation

0),,,(
2

2

2

2

2

2













 constqzyxfqu
z

u

y

u

x

u
, in a parallelepiped, that is, a domain ax< x < bx,

ay< y < by, az< z < bz with one of the following boundary conditions on each boundary bd_*:

 The Dirichlet boundary condition:),,(),,(zyxGzyxu 

 The Neumann boundary condition:),,(),,(zyxgzyx
n

u





, where

n= -x on bd_ax, n= x on bd_bx, n= -y on bd_ay, n= y on bd_by, and n= -z on bd_az, n= z on bd_bz.

 The periodic boundary condition:),,(),,(zybuzyau xx  ,),,(),,(zbxuzaxu yy  or

),,(),,(zz byxuayxu 

We can see that the Poisson problem can be obtained from the Helmholtz problem by setting the
Helmholtz coefficient q to zero. The Laplace problem can be obtained by setting the right-hand side f to
zero in addition to Helmholtz coefficient.

To find an approximate solution for 3D problems, a uniform mesh is built in the parallelepipedal domain:

xjx

x

xx
xx

jxxi

bnxjxxa

n

ab
hni

jxxihax








)(..)(..)0(

,,,..,0

)(,

It is possible to use the standard five-point finite difference approximation on this mesh to compute
the approximation to the solution:

We assume that the values of the approximate solution are computed in the mesh points (xi, yi, zi),
provided the values of the right-hand side f(x, y, z) at these points are given and the values of the appropri-
ate boundary functions G(x, y, z) and/or g(x, y, z) in the mesh points laying on the boundary of the rectan-
gular domain are known.

Discrete Fourier Transform (DFT) computations are highly dependent on the dimension. For powers
of 2, the DFT requires the least possible number of operations, while for the primes the number of opera-

337

tions reaches its maximum value. We consider only dimensions that are powers of 2 as the difficult test
case with a high data movement to operations ratio.

3. Single precision performance

We first look at single precision computations that are of value for Numerical Weather Simulation
problems and consider the Poisson Library (PL) from Intel® MKL. PL does computations in four steps by
consecutive calls to the s_init_helmholtz_2d, s_commit_helmholtz_2d, s_helmholtz_2d, and
free_helmholtz_2d routines. We measure the total time spent in computations.

We consider the homogeneous Dirichlet problem with an exact solution
zyxzyxu  sinsinsin),,( on the rectangular domain 0<x<1, 0<y<1, 0<z<1 as our test case.

All test cases were compiled with Intel® Fortran compilers (version 11.1). We ran each piece of code
10 times in a loop and then selected the best time out of the ten collected. Time measurements were com-
pleted using the dsecnd routine from Intel® MKL. We also used the Poisson Library from Intel® MKL
10.3 Update 7.

Figure 1 shows scalability of Intel® MKL PL routines in 3D Cartesian case. We measure computa-
tional time spent in four PL routines for different regular mesh sizes starting from 32x32x32 and ending
with 512x512x512 and with different numbers of OMP threads.

Figure 1. Scalability of Intel® MKL PL (3D Cartesian case) (single precision)

338

4. Double precision performance

We next look at double precision computations that are of value for preconditioning of elliptic prob-
lems with slightly varying coefficients and we consider the D03FAF routine from NAG* SMP Library
and the Poisson Library from Intel® MKL. The D03FAF routine is able to compute the solution to the
Helmholtz problem in a Cartesian coordinate system in a single step. PL does computations in four steps
by consecutive calls to the double precision routines d_init_helmholtz_2d, d_commit_helmholtz_2d,
d_helmholtz_2d, and free_helmholtz_2d. For fairness, we measured the total time spent in computations
for both software libraries.

We consider the same homogeneous Dirichlet problem with the same exact solution
zyxzyxu  sinsinsin),,( on the same rectangular domain 0<x<1, 0<y<1, 0<z<1 as our test case.

Figure 2. Scalability of Intel® MKL PL (3D Cartesian case) (double precision)

Figure 2 shows scalability of Intel® MKL PL routines in 3D Cartesian case in double precision
arithmetic. Figure 3 shows the ratio of computational time spent in the D03FAF routine and computational
time spent in four PL routines for different regular mesh sizes starting from 32 and ending with 512 mesh
points in each dimension. When the ratio curve is above 1, PL Helmholtz 2D solver is faster than
D03FAF.

339

Figure 3. Comparison of NAG* SMP D03FAF and Intel® MKL PL (3D double precision)

From Figure 3, it can be seen that even on a single thread, the PL routines can be roughly two times
faster than the D03FAF routine. When threaded, the advantage grows up to 11 times on 12 threads. It is
also clear that PL has heavier interface that results in essentially slower performance for small problems
(sizes up to 100). We think that small size problems are not of great interest for HPC area, so the lower
performance of PL in this range should not be considered as a problem. However, PL can regain some
performance in the case when the solution of problems different in right-hand side only as it can do pre-
(init and commit) and post-computational (free) step only once unlike the D03FAF routine.

5. Conclusions

We have investigated the performance of software available for solving 3D Helmholtz problems with
separable variables in parallelepipedal domains. We found that the implementation of the solver from

340

NAG SMP Library shows good serial performance for small size problems (up to 64 mesh points in one
dimension). The optimized implementation of Intel® MKL PL shows better performance and scalability
on larger problem sizes. Performance gains are up to 10 times for some dimensions. Both libraries pro-
duce solutions with the same level of accuracy.

References

1. A. A. Samarskii and E. S. Nikolaev, Methods of Solution of Grid Problems, Nauka, Moscow (1978)
(in Russian)

2. A. A. Kalinkin, Y.M. Laevsky, S.V. Gololobov, 2D Fast Poisson Solver for High-Performance Com-
puting, Parallel Computing Technologies, Lecture Notes in Computer Science 2009, Vol. 5698/2009

3. NAG® SMP Library, http://www.nag.co.uk/numeric/fl/fsdescription.asp

4. Intel® Math Kernel Library, http://www.intel.com/software/products/mkl

341

