
Intel Direct Sparse Solver for Clusters, a research project for
solving large sparse systems of linear algebraic equations 

A. Kalinkin, K. Arturov

Intel Corporation

This research covers the Intel® Direct Sparse Solver for Clusters, the software that
implements a direct method for solving the Ax=b equation with sparse symmetric matrix А
on a cluster. This method, researched by Intel, is based on Cholesky decomposition. To
achieve an efficient work balance on a large number of processes, the so-called 
“multifrontal” approach to Cholesky decomposition is implemented. This software
implements parallelization that is based on nodes of the dependency tree and uses MPI, as
well as parallelization inside a node of the tree that used OpenMP directives. The article
provides a high-level description of the algorithm to distribute the work between both
computational nodes and cores within a single node, as well as between different
computational nodes. A series of experiments proves that this implementation causes no 
growth of the computational time and decreases the amount of memory needed for the
computations.

1. Introduction

The paper describes a direct method based on Cholesky decomposition for solving the equation 
Ax=b with sparse symmetric matrix А. The positive-definite matrix A can be represented in terms of
LLT decomposition, in case of an indefinite matrix the decomposition is LDLT, where the diagonal
matrix D can be amended with extra “penalty” for additional stability of the decomposition. To 
achieve an efficient work balance on a large number of processes, the so-called “multifrontal”
approach to Cholesky decomposition is proposed for the original matrix.

The multifrontal approach was proposed in the papers [1-7]. The decomposition algorithm
implementation consists of several stages/ The initial matrix is subject to a reordering procedure [8-11]
to represent it in the form of a dependency tree. Then the symbolic factorization takes place where the
total number of nonzero elements is computed in LLT. Then a factorization of the permuted matrix in 
the LLT form takes place [2-3, 5].

This work is devoted to Intel® Direct Sparse Solver for Clusters package. This package
implements parallelization based on nodes of the dependency tree using MPI as well as parallelization 
inside the node of tree using OpenMP directives. A variant of MPI-parallelization of Cholesky 
decomposition can be found in [1, 5]. However, as it will be shown later, such an algorithm becomes
poorly scaled both in computational time and in the amount of memory used by each process if the
total number of processes increases. To avoid scalability issues, we propose an algorithm, where one
“tree” node is distributed among several computational nodes, and data transfers are interleaved with 
the computations preventing the growth of the computational time and reducing the amount of
memory required for each process. This paper describes this algorithm.

The paper is organized as follows: Section 2 provides a brief description of the reordering step
and describes parallel algorithms to distribute the work between both computational nodes and cores
within a single node. Section 3 briefly describes the algorithm distributing a tree node between 
different computational nodes. Section 4 demonstrates on a series of experiments that this
implementation does not result in the growth of the computational time and decreases the amount of
memory needed for a process.

.

6



2. Main definitions and algorithms

In a general case, the algorithm of Cholesky decomposition can be presented in the following way:

Algorithm 0, Cholesky decomposition

L = A

for j = 1,size_of_matrix

{ for j = 1,i

{L(i,j) = L(i,j)-L(i,k)L(k,j), k = 1,j-1

if (i==j) L(i,j) = sqrt(L(i,j)

if (i>j) L(i,j) = L(i,j)/L(j,j)

}

}

Figure 1. Original matrix non-zero pattern

Here A is a symmetric, positive-define matrix and L is the resulted lower-triangular matrix. If the
initial matrix has a lot of zero elements (such kind of a matrix is called sparse), this algorithm can be
rewritten in a more efficient way called multifrontal approach.

Suppose we have a sparse symmetric matrix A (Figure 1), where each grey block is in turn a
sparse sub-matrix and each white one is a zero matrix. Using reordering algorithm procedures [12],
this matrix can be reduced to the pattern as in Figure 2. A reordered matrix is essentially more
convenient for computations than the initial one since Cholesky decomposition can start
simultaneously from several entry points (for the matrix from Figure 2, 1st, 2nd, 4th and 5th rows of the
matrix L can be calculated independently. For the original matrix from Figure 1, two rows only,
namely, 1st and 4th, can be calculated independently. So, the reordering can provide an advantage for
the algorithm implementation on parallel machines. While proceeding with Cholesky decomposition,
the

Figure 2. Non-zero pattern of the original matrix after reordering

7



non-zero pattern of the upper and lower triangular matrices in the final decomposition do not
agree with the pattern of the original matrix, that is, additional non-zero blocks may appear (depicted 
as light-grey squares in the Figure 2). To be precise, a non-zero pattern of the matrix L in Cholesky
decomposition is calculated at the symbolic factorization step before the main factorization step
(stage). At this stage, we know the structure of the original matrix A after the reordering step and can 
calculate the non-zero pattern of the matrix L. At the same stage, the original matrix A stored in the
sparse format is appended with zeros so that its non-zero pattern matches completely that of the matrix
L. Henceforth, we will not distinguish the non-zero patterns of the matrices A and L. Moreover, it
should be mentioned here that elements of the matrix L in the rows 3 and 6 can be computed only after
the respective elements in the rows 1, 2 and 4, 5 are computed. The elements in the 7th row can be
computed at last. This allows us to construct the dependency tree [1-2, 5-6] - a graph where each node
corresponds to a single row of the matrix and each graph node can be computed only if its “children”
(nodes on which it depends) are computed. The dependency tree for the matrix is given in the Figure
3а (the number in the center of a node shows the respective row number). For our example, an optimal
distribution of the nodes between the computational processes is given in the Figure 3b, where the first
bottom level of the nodes belongs to the processes with the numbers 0, 1, 2, …, the second level
belongs to 0, 2, 4, …, the third belongs to 0, 4, 8, ..., etc.

Figure 3a-b. Dependency tree sample distribution among processes

To compute elements of LLT decomposition within a node Z of the dependency tree, it is
necessary to compute the elements of LLT decomposition in the nodes on which Z depends (its sub-
trees). We call an update procedure to bring already computed elements to the node Z (actually, this
procedure takes the elements from the sub-trees of Z multiplied by themselves and subtracted from
elements of Z, so the main problem here is in a different non-zero pattern of Z and its sub-trees. The
4th line of the Algorithm 0 completes this operation with different L(i,k) being placed into different
nodes of the tree, the last step is to calculate LLT decomposition of elements placed into node Z.
Algorithm 1 describes an implementation of the above mentioned piece of the global decomposition in 
terms of a pseudo-code:

Algorithm 1. Tree-parallelization in Cholesky decomposition

for current_level = 1, maximal_level

{Z = node number that will be updated by this process

for nodes of the tree with level smaller than the current_level

{prepare an update of Z by multiplying elements of LLT decomposition
elements lying within the current node by themselves}

send own part of update of Z from each process to process which stores Z

on process that stores Z compute LLT elements of Z}

8



Consider in details an implementation of the algorithms called “compute elements of Z” and 
“prepare an update”.

Each tree node in turn can be represented as a sub-tree or as a square symmetric matrix. To use
Algorithm 1, one needs to implement LLT decomposition of each node on a single computational
process. To compute Cholesky decomposition of each node of the tree, a similar algorithm could be
implemented on a single computational process with several threads. If the number of threads is equal
to the number of nodes of the tree on the bottom level, then LLT factors for each node from the very 
bottom level of the tree are calculated by a single thread, on the next level each node can be calculated 
by 2 threads, on the next one by 4 threads, etc. However, such an algorithm becomes inefficient for the
top nodes of the initial tree. Instead, Olaf Schenk suggested some modification of the standard 
algorithm of Cholesky decomposition for sparse symmetric matrices. The standard LLT decomposition 
for sparse symmetric matrices can be described as follows:

Algorithm 2. Classical LLT decomposition for sparse matrix

for row = 1, size_of_matrix

{for column = 1, row

{S = A[row, column]

for all non-zero elements in the row before the column, S = S – A[row,
element]*A[element, column]

// A[row, element]*A[element, column] have been computed

If column<row A[row, column] = S/A[column, column]

else A[row, column] = S1/2

}

}

In the paper [7], the following modification of Algorithm 2 for the computers with shared 
memory is proposed. Each computational thread sequentially selects a row or a set of k rows with 
similar structure (such set of rows is called supernode) supr, for which the following operations are
performed.

Algorithm 3. Supernode modifications of Cholesky algorithm

for column = 1, supr

{if column is not computed - wait, otherwise do {A[supr,*] = A[supr,*] –
A[column, *]*A[column, column]}

// A[column, column] could be a square matrix

}

A[supr, supr] = (A[supr, supr])1/2

// if k ≠1, ½ means Cholesky decomposition of a dense matrix that can be
computed with Lapack functions

A[supr, supr+k,..,n] = A[supr, supr+k,..,n] * inv(A[supr, supr)],where
inv(B) mean inverse matrix B

9



In his paper, Olaf Schenk applies the algorithm to the entire matrix. In this paper, we apply it to 
the tree nodes only. Namely this provides an efficient Cholesky decomposition for a dependency tree
node of the initial matrix.

The aforementioned Algorithm 3 describes an implementation of the procedure “compute
elements of Z” in terms of the Algorithm 1. The procedure “prepare an update” differs only in a sense
that each process modifies zero columns with the structure similar to A[supr,*] rather than A[supr,*]
itself. After each process computes its update performing simple summation, we obtain A[supr,*] from
which the computed elements of LLT decomposition have been already deduced.

Thus, we have described the main steps of Algorithm 1. It has a number of drawbacks, however.
First, the number of elements of the matrix L in each process differs significantly (for instance in the
Figure 3b, the process 0 stores 3 tree nodes, whereas processes 1 and 3 have only one each). As a
result, many processes may stay idle expecting the next task to work on. The size of the memory 
necessary for each process to store elements of the matrix L differs drastically. Following the idea of
Algorithm 1, it can be demonstrated that all processes compute an update first, they start transferring 
data afterwards. This is inefficient since at this time the majority of processes are idle again. To avoid 
the idle time and distribute elements of LLT-factors between processes more evenly, we propose an 
algorithm described in the next Section.

3. Asynchronous execution of processes

Figure 4. Distribution of nodes among processes

To avoid issues with uneven distribution of the elements of the matrix L, we propose a
distribution method as in Figure 4 (digits in the decagons indicate the link of a node with a given 
process).

Figure 4 demonstrates the same dependence tree as in Figure 3 with the elements from each node
of the tree being distributed in different manner between computational processes. At each tree level
but the first (bottom) one, the elements of the matrix L are stored on several processes, e.g., at the
second level all supernodes are distributed between two processes, at the third one – between four
processes, etc. Supernodes from each node of the tree are distributed between n processes as follows:
if the total number of supernodes in a certain tree node is m, then the first group of m1 supernodes
belongs to the first process, the next group of m2 supernodes – to the second process, etc. Here m1+
m1+…+ mn=m. Note that the numbers m1, m2,.., mn may vary that allows one to adjust them in order to 
provide better performance of the overall algorithm. Then Algorithm 1 is modified so that each 
process computes its part of the tree node Z. However, this idea does not provide a solution to the
problem of keeping processes busy during the computations. Moreover, the problem becomes even 
bigger since parallel computation of the elements of the matrix L in a single tree node is virtually 
impossible – almost all supernodes in a single tree node are normally dependent on each other.

Note that each process can be executed by a modern computational node and, therefore, the node
can consist of several dozens of individual computational threads. For individual processes to 

10



send/receive the data and carry out the computations, we designate one thread in each process to be a
“postman”. A “postman” is a thread responsible for data transfer between the processes. Let us
consider how Algorithm 2 changes.

3.1 Prepare an update

As it was stated in the Section 2, the Algorithm “prepare an update” is a modification of the
Algorithm 3. As was mentioned before, to calculate LLT factors from node Z of the dependence tree
we need to calculate all LLT factors from its sub-trees and take them into account during computations
of LLT factors of node Z. In general case, however, the node of the tree Z and its sub-tree are stored on 
different computational processes, so we cannot do it straightforwardly (node Z and its sub-tree have
different non-zero pattern, for example). To resolve the issue, the following algorithm is proposed/
Each computational process i allocates matrix Zi with the same non-zero pattern as the matrix
corresponding to the node Z and fills it in with zero elements. Then, all elements from the sub-trees
stored on the process i are taken into account in the matrix Zi as if Zi is Z (4th line in the Algorithm 0).
Further, the computed matrices Zi are collected on the required process. Considering that we separated
a postman thread, there is no need to compute an update first, and send it later, so computations and 
data transfers can be interleaved.

Algorithm 4. Asynchronous approach in Cholesky decomposition 

if thread is a postman thread

{Open a recipient to get updates

for supr in A_loc

if supernode supr is computed, send it to the respective process

else wait until supernode is computed

}

else

{create A_loc(all elements in Z) // zero out the elements of node Z with
the same non-zero pattern

for supr in A_loc

{ if column on the current process

A_loc[supr,*] = A_loc[supr,*] – A[column, *]*A[column, column]

// supernode supr is computed

}

}

It is apparent that having decreased the number of the threads involved in the computations we
increased the total time of “update” computations in each process. Nevertheless, the experiments with 
a big number of threads show that the computational time increases insignificantly. It is also important
to note that despite of the increase of the computation time to do the necessary “update”, the transfer
of the computed pieces between processes overlaps with these computations. Therefore, the total time
spent in the new Algorithm is less compared to the Algorithm 3.

11



3.2 Compute elements of a tree node

It is much more interesting to consider a more complicated algorithm of computing the elements
of the matrix L in a single node of the tree provided that this node is distributed among several
processes. Let the elements of the node Z including the elements of the dependent sub-trees (children)
that are not processed yet be distributed as it is shown in the Figure 5a, i.e. the first group of
supernodes belongs to the first process, and the second group – to the second one, etc. So, each 
computational process stores only “grey” supernodes.

Figure 5a. Supernode distribution among the processes

It can be clearly seen that with such a distribution only the process 0 can start the computations.
Thus, the first supernode can only be computed within it. However, after the supernode computation is
done, it can be used by the computational threads of the process 0 for other (dependent) supernodes,
second it can be sent by the postman thread to other processes, which in turn can use it in their
(dependent) supernodes (see the Figure 5b, where blue arrows indicate communications between the
processes, the green ones – the update of the supernodes on each process with the supernode received 
from the process number 0).

Figure 5b. Computational flow

With this example, it is apparent that if each process has more than 3 computational threads, some
threads will simply lack a supernode to process, so making a postman out of one computational thread
will have little effect on the overall efficiency if the thread count is big enough. Of course, one
supernode can be processed with several threads, but this is not going to be considered in this paper.

4. Numerical experiments

All numerical experiments in this paper were carried on the Infiniband*-linked cluster consisting 
of 16 computational nodes; each node contains two Intel® Xeon® X5670 processors (12 cores in 
total) with 48Gb of RAM per node. The variable number of the computational threads within a node is
created, i.e. only part of totally available threads is working within the nodes in the most cases.

12



4.1 Scaling of computational time

Figure 6a-b. Intel® Direct Sparse Solver for Clusters scalability of time

For this experiment, we selected either 7-diagonal matrix resulted from the approximation of a
Helmholtz equation on a uniform grid with a positive coefficient (specific Helmholtz coefficient value
is not crucial here since it has no effect on the matrix structure and only the accuracy of the solution 
obtained depends on it), or the matrix generated from the oil-filtration problem. The number of
degrees of freedom (NDOF) for the first matrix is about 398K elements, for the second one is about
1.7M, and the number of nonzero elements (NNZ) in each matrix is 15.7M and 12M, respectively.

Figures 6a-6b show acceleration of Intel® Direct Sparse Solver for Clusters code on a different
number of processes compared to the same program launched on 1 MPI process with 2 OpenMP
threads on different matrices. The colored lines correspond to a different number of OpenMP threads
used in the code. It can be seen from the Figures that the execution time reduces in all cases with the
increase of the number of threads and processes. It can be readily seen that sometimes even super-
linear acceleration takes place depending on the number of OpenMP threads that can be easily 
explained from the nature of the algorithm – one thread is used to send & receive data and rather often 
it falls out of the computations. For example, in the case of 2 threads, one thread is the postman and 
the other is the computational one, in the case of 4 threads, one thread is the postman and 3 others are
computational ones. Based on the Figures, it can be concluded that it is recommended to exploit the
computational threads on the node to the maximum and it is not recommended to have several
computational processes per one node. From the Figure 6а, it is apparent that the acceleration of the
combination 2 MPI x 8 OpenMP is larger than 4 MPI x 4 OpenMP, that in turn, is larger than 8MPI x 
2 OpenMP. This perfectly matches the architecture features imposed by the modern computer systems,
namely, the growing number of cores (threads) per computational node.

4.2 Memory scaling per node

Figure 7a-b. Intel® Direct Sparse Solver for Clusters memory

13



We use the same matrices as before for the testing purposes. In the Figures 7a-7b, the maximal
memory size needed for a computational node depending on the number of nodes is presented.
Memory size that Intel® Direct Sparse Solver for Clusters needs for every computational node barely 
depends on the number of computational threads on it. Therefore, we present the data for the number
of threads equal to 12 only. It is apparent that the memory size that every process needs demonstrates
invers dependence on the number of processes (for the second matrix, the memory required decreased 
5 times for 16 processes vs. 1 process). If the computational cluster has insufficient memory per node,
it is still possible to solve the system of linear equations using Intel® Direct Sparse Solver for Clusters
package increasing the number of nodes in the cluster. An example of this will be shown in the
following

4.3 Solving a huge system of linear equations

Figure 8a-b. Intel® Direct Sparse Solver for Clusters time and memory scalability, a huge system

In this Subsection, we chose a matrix of size 5.8M with more than half a billion non-zero 
elements for the experiment. Thanks to Intel® Direct Sparse Solver for Clusters memory scaling, we
can solve this system on 8+ MPI processes. Note that almost 40 GB of memory is required per process
in case of 8 MPI processes. For 16 processes, 29GB of memory is only required (see Figure 8b). In 
Figure 8a, the comparison of computational time with the configuration 8 MPI x 2 OpenMP is
presented. It is clear that even for such a big matrix size and big number of MPI processes, Intel®
Direct Sparse Solver for Clusters shows good scalability both in terms of OpenMP threads and MPI
processes.

5. Conclusion

Within the frameworks of multifrontal approach, we proposed an efficient algorithm
implementing all stages of Cholesky decomposition inside the node of the dependency tree for all
processes on a distributed memory machine. This approach is implemented in Intel® Direct Sparse
Solver for Clusters package, and numerical experiments show good scaling in computational time -
proportional to the number of computational nodes used and the number of threads within them.
Besides, this algorithm reduces the requirement for the memory size used by the algorithm on a single
node when the number of processes grows. The experiments made confirm this.

Acknowledgement The authors would like to thank Sergey Gololobov for providing feedback
that improved both style and content of the paper.

References

1. P.R.Amestoy, I.S.Duff, C.Vomel, Task scheduling in an asynchronous distributed memory
multifrontal solver, SIAM Journal on Matrix Analysis and Applications, Vol 26(2) pp 544--
565 (2005)

14



2. P. Amestoy, I.S. Duff, S. Pralet, C. Voemel, Adapting a parallel sparse direct solver to SMP
architectures, Parallel Computing, 29 (11-12), pages 1645-1668.

3. P. R. Amestoy, A. Guermouche, J.-Y. L'Excellent and S. Pralet. Hybrid scheduling for the
parallel solution of linear systems, Parallel Computing 32 (2): 136-156, 2006.

4. Amestoy, P. R. and Duff, I. S. 1993. Memory management issues in sparse multifrontal
methods on multiprocessors. Int. J. Supercomput. Appl. 7, 64--82.

5. P.R. Amestoy, I.S. Duff, J.-Y. L'Excellent, and J. Koster, A fully asynchronous multifrontal
solver using distributed dynamic scheduling, SIAM Journal on Matrix Analysis and
Applications, 23[1], 15-41 (2001)

6. M. Bollhöfer and O. Schenk, Combinatorial Aspects in Sparse Direct Solvers, GAMM
Mitteilungen, 29 (2006), pp. 342-367.

7. Olaf Schenk and Klaus G¨artner. On fast factorization pivoting methods for sparse symmetric
indenite systems. Technical report, Department of Computer Science, University of Basel,
2004

8. A Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering. George
Karypis and Vipin Kumar. 10th Intl. Parallel Processing Symposium, pp. 314 - 319, 1996.

9. A Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering. George
Karypis and Vipin Kumar. Journal of Parallel and Distributed Computing, Vol. 48, pp. 71 -
85, 1998

10. Parallel Multilevel Algorithms for Multi-Constraint Graph Partitioning. Kirk Schloegel,
George Karypis, and Vipin Kumar. Euro-Par, pp: 296-310, 2000

11. George Karypis, Vipin Kumar: Parallel Multilevel Graph Partitioning. IPPS 1996: 314-319
12. http://glaros.dtc.umn.edu/gkhome/views/metis

15


