# Применение индексного метода глобальной оптимизации при решении обратных задач химической кинетики<sup>\*</sup>

М.В. Тихонова<sup>1</sup>, В.В. Рябов<sup>2</sup> БашГУ<sup>1</sup>, ННГУ им. Лобачевского<sup>2</sup>

Построение математических моделей и решение обратных задач физической химии связаны с минимизацией отклонения между расчетными и экспериментальными данными. Для этого требуется многократное решение вычислительно трудоёмких прямых задач. Для изучения механизмов сложных химических реакций металлокомплексного катализа, исследуемых в ИНК РАН, и определения их кинетических параметров в рамках данной работы предложено использовать параллельный индексный метод глобальной оптимизации, разрабатываемый в ННГУ им. Лобачевского. Метод использует редукцию размерности на основе кривых Пеано и информационно-статистический подход, дополненный схемой построения множественных отображений (вращаемые развёртки), позволяющих эффективно использовать сотни процессоров. Также для ускорения поиска используется смешанная локально-глобальная стратегия и другие модификации индексного метода.

## 1. Введение

Построение математических моделей сложных химических реакций предполагает наличие в них неизвестных кинетических параметров (константы скоростей, энергии активации и частота столкновений реагирующих молекул элементарных стадий), которые можно найти, решая задачу минимизации отклонения между расчётными данными (прямая задача) и данными натурных экспериментов. Таким образом, возникает задача идентификации математической модели (обратная задача химической кинетики), которая в общем случае является задачей глобальной оптимизации.

Многие физико-химические задачи предполагают значительный объем вычислений, обеспечивающих, тем не менее, достаточно низкую точность. Именно к таким задачам относятся обратные задачи изучения механизмов сложных химических реакций, представляющие собой оптимизационные задачи циклического решения множества прямых задач – систем дифференциальных и алгебраических уравнений. Для кинетики сложных химических реакций характерно наличие быстро и медленно меняющихся переменных. Так как стадии реакций протекают с различными скоростями, то решение прямых кинетических задач осложняются жесткостью систем дифференциальных уравнений, описывающих механизмы этих реакций. В связи с этим актуальным является решение обратных задач с использованием эффективных численных методов глобальной оптимизации на высокопроизводительных многопроцессорных вычислительных системах (суперкомпьютерах).

## 2. Постановка задачи

Прямая кинетическая задача для изотермической нестационарной модели в закрытой системе представляет собой задачу Коши для системы обыкновенных дифференциальных уравнений:

$$\frac{dx_i}{dt} = F_i, \ i = 1..M; \quad F_i = \sum_{j=1}^N S_{ij} w_j;$$
(1)

$$w_{j} = k_{j} \prod_{i=1}^{M} (x_{i})^{|\alpha_{ij}|} - k_{-j} \prod_{i=1}^{M} (x_{i})^{|\beta_{ij}|};$$
(2)

<sup>&</sup>lt;sup>\*</sup> Работа выполнена при поддержке совета по грантам Президента Российской Федерации (грант № НШ-64729.2010.9).

с начальными условиями:  $t=0, x_i(0)=x_i^0$ , где

*x<sub>i</sub>* – концентрации веществ (*мольные доли*), участвующих в реакции;

М-количество веществ; N-количество стадий;

 $S_{ij}$  – стехиометрическая матрица;  $w_j$  – скорость *j*-ой стадии (1/4);

 $k_{j}, k_{-j}$  – приведенные константы скорости прямой и обратной реакции (1/4) соответственно;

 $\alpha_{ij}$  – отрицательные элементы  $S_{ij}$ ,  $\beta_{ij}$  – положительные элементы  $S_{ij}$ .

Поскольку часть констант  $k_{j}$ ,  $k_{\cdot j}$ , как правило, неизвестны, возникает задача идентификации математической модели или обратная кинетическая задача, которая представляет собой задачу минимизации функционала отклонения между расчетными и экспериментальными данными:

$$F = \sum_{i=1}^{n} \sum_{j=1}^{M} \left| x_{ij}^{p} - x_{ij}^{\circ} \right| \to \min,$$
(3)

где

 $x_{ij}^{p}$  – расчетные значения концентраций наблюдаемых веществ, (*мольные доли*);

 $x_{ij}^{3}$  – экспериментально полученные значения концентраций наблюдаемых веществ, (*мольные доли*); *n* – количество точек эксперимента.

Так как при поиске констант скоростей элементарных стадий они могут попасть в область, где система дифференциальных уравнений, описывающая реакцию, может оказаться жесткой, для решения прямой задачи используется метод Мишельсена с автоматическим выбором шага [1].

Поскольку выходные данные модели  $(x_{ij}^{p})$  зависят нелинейно от значений констант  $k_{j}$ ,  $k_{-j}$ , задача (3) является в общем случае задачей многоэкстремальной оптимизации.

При наличии заданных отрезков варьирования констант  $k_{j}$ ,  $k_{-j}$  (входных параметров), при условии липшицевости функционала F и при заданной точности  $\varepsilon$  требуемой оценки глобального оптимума такая задача является NP-трудной (с ростом числа входных параметров вычислительные затраты растут экспоненциально).

Для решения задачи (3), помимо тривиального равномерного перебора и методов Монте-Карло, существует целый ряд эффективных в том или ином смысле методов, использующих априорную информацию о целевой функции (липшицевость) и поисковую информацию (значения функции в точках испытаний, выбранных на предыдущих шагах). Для большинства подобных методов характерно построение неравномерного покрытия области поиска, более плотного в окрестности глобального оптимума.

Для нахождения энергии активации и частоты столкновений реагирующих в элементарной стадии молекул используется уравнение Аррениуса:

$$k = A e^{-\frac{Ea}{RT}},\tag{4}$$

где k – приведенная константа скорости элементарной стадии, 1/4;

Е-энергия активации, Дж/моль,

*R* – универсальная газовая постоянная, Дж/(моль·К),

А – частота столкновений реагирующих молекул,

Т-температура, К.

#### 2.1 Реакция карбоалюминирования олефинов и ацетиленов

Для применения новой методики идентификации была выбрана математическая модель реакции каталитического карбоалюминирования олефинов и ацетиленов с помощью триалкилаланов в присутствии комплексов переходных металлов. Эта реакция получила применение в лабораторной практике ИНК РАН как эффективный способ построения новых Me-C (метил-углерод), Et-C (этилуглерод) и C-C (углерод-углерод) связей [2].

В ИНК РАН г. Уфы предложен ряд схем, описывающих реакции каталитического карбоалюминирования олефинов и ацетиленов при различных катализаторах.

## 2.1.1 Et-C связи

Для исследования Et-C связи предложено две кинетические схемы:

- 1. 10 стадийная схема с обратимой 1-й элементарной стадией (таблица 1);
- 2. 12 стадийная схема с обратимой 1-й элементарной стадией (таблица 3).

Приоритетная задача – выбрать наиболее вероятную схему.

**Таблица 1.** 10-стадийная схема реакции карбоалюминирования олефинов и ацетиленов в присутствии катализатора *Cp*<sub>2</sub>*ZrCl*<sub>2</sub>.

| 1.  | $A_1 + A_2 \xrightarrow{k_1} A_3$                                                           | $w_1 = k_1 x_1 x_2 \cdot k_{-1} x_3$ |
|-----|---------------------------------------------------------------------------------------------|--------------------------------------|
| 2.  | $\begin{array}{c} & & \\ & & \\ & & \\ A_2 + A_3 & \longrightarrow & A_4 + A_5 \end{array}$ | $w_2 = k_2 x_2 x_3$                  |
| 3.  | $\begin{array}{c} k_3 \\ A_4 + A_6 & \longrightarrow & A_7 \end{array}$                     | $w_3 = k_3 x_4 x_6$                  |
| 4.  | $A_2 + A_7 \longrightarrow A_4 + A_8$                                                       | $w_4 = k_4 x_2 x_7$                  |
| 5.  | $\begin{array}{ccc} k_5 \\ A_4 & \longrightarrow & A_9 + A_{10} \end{array}$                | $w_5 = k_5 x_4$                      |
| 6.  | $A_6 + A_{10} \longrightarrow A_{11}$                                                       | $w_6 = k_6 x_6 x_{10}$               |
| 7.  | $\begin{array}{ccc} & & & & & \\ A_2 + A_{11} & \longrightarrow & A_4 + A_{12} \end{array}$ | $w_7 = k_7 x_2 x_{11}$               |
| 8.  | $A_7 \longrightarrow A_{13} + A_{14}$                                                       | $w_8 = k_8 x_7$                      |
| 9.  | $A_6 + A_{14} \longrightarrow A_{15}$                                                       | $w_9 = k_9 x_6 x_{14}$               |
| 10. | $A_2 + A_{15} \longrightarrow A_4 + A_{16}$                                                 | $w_{10} = k_{10} x_2 x_{15}$         |

где  $w_j$  – скорость *j*-й элементарной стадии, 1/4;

*x<sub>i</sub>* – концентрация *i*-го вещества (соответствует *A<sub>i</sub>*), мольная доля;

*k<sub>i</sub>* – приведенная константа скорости *j*-й элементарной стадии, *1/ч*.

В качестве А<sub>i</sub>выступают вещества, приведённые в таблице 2.

Таблица 2. Список веществ 10-стадийной схемы реакции карбоалюминирования олефинов и ацетиленов

| $A_1 = L_2 Zr Cl_2,  L_2 = Cp$ | $A_9 = C_2 H_6$                                 |
|--------------------------------|-------------------------------------------------|
| $A_2 = AlEt_3$                 | $A_{10} = L_2 Zr(Cl)CH_2 CH_2 AlEt_2$           |
| $A_3 = L_2 ZrClEtClAlEt_2$     | $A_{11} = L_2 Zr(Cl)CH_2 CH_2 (R)CH_2 CHAlEt_2$ |
| $A_4 = L_2 Zr Et ClAlEt_3$     | $A_{12} = EtAlCH_2CH_2CHRCH_2$                  |
| $A_5 = ClAlEt_2$               | $A_{13} = H_2 CCEtR$                            |
| $A_6 = CH_2 CHR$               | $A_{14} = L_2 Zr HClAlEt_3$                     |
| $A_7 = CH_2CHEtRL_2ZrClAlEt_3$ | $A_{15} = L_2 Zr C H_2 C H_2 (R) ClAl E t_3$    |
| $A_8 = CH_2CHEtRAlEt_2$        | $A_{16} = Et_2 A l C H_2 C H_2 R$               |

| 1.  | $A_1 + A_2 \xrightarrow[k_{-1}]{k_1} A_3$                                             | $w_I = k_I x_I x_2 - k_{-I} x_3$ |
|-----|---------------------------------------------------------------------------------------|----------------------------------|
| 2.  | $\begin{array}{ccc} k_2 \\ A_2 + A_3 & \longrightarrow & A_4 + A_5 \end{array}$       | $w_2 = k_2 x_2 x_3$              |
| 3.  | $A_4 + A_6 \longrightarrow A_7$                                                       | $w_3 = k_3 x_4 x_6$              |
| 4.  | $A_2 + A_7 \longrightarrow A_4 + A_8$                                                 | $w_4 = k_4 x_2 x_7$              |
| 5.  | $A_4 \longrightarrow A_9 + A_{10}$                                                    | $w_5 = k_5 x_4$                  |
| 6.  | $A_6 + A_{10} \longrightarrow A_{11}$                                                 | $w_6 = k_6 x_6 x_{10}$           |
| 7.  | $\begin{array}{ccc} k_7 \\ A_2 + A_{11} & \longrightarrow & A_4 + A_{12} \end{array}$ | $w_7 = k_7 x_2 x_{11}$           |
| 8.  | $A_7 \longrightarrow A_{13} + A_{14}$                                                 | $w_8 = k_8 x_7$                  |
| 9.  | $A_6 + A_{14} \longrightarrow A_{15}$                                                 | $w_9 = k_9 x_6 x_{14}$           |
| 10. | $A_2 + A_{15} \longrightarrow A_4 + A_{16}$                                           | $w_{10} = k_{10} x_2 x_{15}$     |
| 11. | $A_6 + A_{15} \longrightarrow A_{17}$                                                 | $w_{11} = k_{11} x_6 x_{15}$     |
| 12. | $A_{17} \longrightarrow A_{14} + A_{18}$                                              | $w_{12} = k_{12}x_{17}$          |

**Таблица 3.** 12-стадийная схема реакции карбоалюминирования олефинов и ацетиленов в присутствии катализатора *Cp*<sub>2</sub>*ZrCl*<sub>2</sub>.

В качестве Аівыступают вещества, приведённые в таблице 4.

Таблица 4. Список веществ 12-стадийной схемы реакции карбоалюминирования олефинов и ацетиленов

| $A_1 = L_2 Zr Cl_2,  L_2 = Cp$ | $A_{10} = L_2 Zr(Cl)CH_2 CH_2 AlEt_2$          |
|--------------------------------|------------------------------------------------|
| $A_2 = AlEt_3$                 | $A_{11} = L_2 Zr(Cl)CH_2CH_2(R)CH_2CHAlEt_2$   |
| $A_3 = L_2 ZrClEtClAlEt_2$     | $A_{12} = EtAlCH_2CH_2CHRCH_2$                 |
| $A_4 = L_2 Zr Et ClAlEt_3$     | $A_{13} = H_2 CCE tR$                          |
| $A_5 = ClAlEt_2$               | $A_{14} = L_2 Zr HClAlEt_3$                    |
| $A_6 = CH_2CHR$                | $A_{15} = L_2 Zr CH_2 CH_2 (R) ClAlEt_3$       |
| $A_7 = CH_2CHEtRL_2ZrClAlEt_3$ | $A_{16} = Et_2 AlC H_2 C H_2 R$                |
| $A_8 = CH_2CHEtRAlEt_2$        | $A_{17} = L_2 Zr CH_2 CHR CH_2 CH_2 RClAlEt_3$ |
| $A_9 = C_2 H_6$                | $A_{18} = H_2 CCRCH_2 CH_2 R$                  |

Натурный эксперимент по проведению реакции каталитического карбоалюминирования олефинов и ацетиленов проводился при температуре 22°С и начальных концентрациях (мольные доли):

$$x_1 = 0.009, x_2 = 0.541, x_6 = 0.450$$

В ходе эксперимента наблюдались концентрации пяти веществ и выдавались их процентные соотношения, приведённые в таблице 5.

| Время (с.) \ концентрация (%) | A6  | A8 | A12 | A14 | A16 |
|-------------------------------|-----|----|-----|-----|-----|
| 0                             | 100 | 0  | 0   | 0   | 0   |
| 0.25                          | 36  | 15 | 15  | 8   | 26  |
| 1.25                          | 30  | 27 | 20  | 3   | 20  |
| 2.75                          | 31  | 33 | 16  | 1   | 19  |
| 5                             | 23  | 34 | 15  | 16  | 12  |
| 8                             | 33  | 28 | 19  | 5   | 15  |
| 24                            | 6   | 33 | 29  | 26  | 6   |

Таблица 5. Соотношения концентраций наблюдаемых веществ

## 2.1.2 Ме-С связи

Для исследования Ме-С связи предложено две кинетические схемы:

1. 8 – стадийная схема с катализатором *Cp*<sub>2</sub>*ZrCl*<sub>2</sub> (таблица 6);

2. 12 – стадийная схема с катализатором  $(CpMe_5)_2 ZrCl_2$  (таблица 8).

Приоритетная задача – найти энергии активации элементарных стадий предложенных схем при различных катализаторах.

**Таблица 6.** 8-стадийная схема реакции карбоалюминирования олефинов и ацетиленов в присутствии катализатора *Cp*<sub>2</sub>*ZrCl*<sub>2</sub>

| 1. | $A_1 + A_2 \xrightarrow{k_1} A_3$                                                     | $w_1 = k_1 x_1 x_2 - k_{-1} x_3$     |
|----|---------------------------------------------------------------------------------------|--------------------------------------|
| 2. | $A_2 + A_3 \stackrel{k_2}{\longleftarrow} A_4 + A_5$                                  | $w_2 = k_2 x_2 x_3 - k_{-2} x_4 x_5$ |
| 3. | $A_4 + A_6 \xrightarrow{k_3} A_7$                                                     | $w_3 = k_3 x_4 x_6$                  |
| 4. | $A_2 + A_7 \xrightarrow{k_4} A_4 + A_8$                                               | $w_4 = k_4 x_2 x_7$                  |
| 5. | $A_7 \longrightarrow A_{13} + A_{14}$                                                 | $w_5 = k_5 x_7$                      |
| 6. | $A_6 + A_{14} \longrightarrow A_{15}$                                                 | $w_6 = k_6 x_6 x_{14}$               |
| 7. | $A_6 + A_{15} \longrightarrow A_{14} + A_{18}$                                        | $w_7 = k_7 x_6 x_{15}$               |
| 8. | $\begin{array}{ccc} K_8 \\ A_2 + A_{15} & \longrightarrow & A_4 + A_{16} \end{array}$ | $w_8 = k_8 x_2 x_{15}$               |

В качестве А<sub>*i*</sub>выступают вещества, приведённые в таблице 7.

**Таблица 7.** Список веществ 8-стадийной схемы реакции карбоалюминирования олефинов и ацетиленов в присутствии катализатора  $Cp_2ZrCl_2$ 

| $A_1 = L_2 Zr Cl_2,  L_2 = Cp$ | $A_{10} = L_2 Zr(Cl) CH_2 CH_2 AlMe_2$          |
|--------------------------------|-------------------------------------------------|
| $A_2 = AlMe_3$                 | $A_{11} = L_2 Zr(Cl)CH_2 CH_2 (R)CH_2 CHAlMe_2$ |
| $A_3 = L_2 Zr ClMe ClAlMe_2$   | $A_{12} = MeAlCH_2CH_2CHRCH_2$                  |
| $A_4 = L_2 Zr Me ClAlMe_3$     | $A_{13} = H_2 CCMeR$                            |
| $A_5 = ClAlMe_2$               | $A_{14} = L_2 Zr HClAlMe_3$                     |
| $A_6 = CH_2CHR$                | $A_{15} = L_2 Zr C H_2 C H_2 (R) ClAl M e_3$    |
| $A_7 = CH_2CHMeRL_2ZrClAlMe_3$ | $A_{16} = Me_2AlCH_2CH_2R$                      |
| $A_8 = CH_2CHMeRAlMe_2$        | $A_{17} = L_2 Zr CH_2 CHR CH_2 CH_2 RClAlMe_3$  |
| $A_9 = C_2 H_6$                | $A_{18} = H_2 CCRCH_2 CH_2 R$                   |

|    | k,                                             |                                  |
|----|------------------------------------------------|----------------------------------|
| 1. | $A_1 + A_2 \longrightarrow A_3$                | $w_1 = k_1 x_1 x_2 - k_{-1} x_3$ |
|    | $\frac{1}{k_{-1}}$                             | 1 1 1 2 1 5                      |
|    | $k_2$                                          |                                  |
| 2. | $A_3 + A_6 \longrightarrow A_{19}$             | $w_2 = k_2 x_3 x_6$              |
|    | $k_3$                                          |                                  |
| 3. | $A_2 + A_{19} \longrightarrow A_3 + A_8$       | $w_3 = k_3 x_2 x_{19}$           |
|    | $k_4$                                          |                                  |
| 4. | $A_{19} \longrightarrow A_1 + A_8$             | $w_4 = k_4 x_{19}$               |
|    | $k_5$                                          |                                  |
| 5. | $A_{19} \longrightarrow A_{13} + A_{20}$       | $w_5 = k_5 x_{19}$               |
|    | $k_6$                                          |                                  |
| 6. | $A_6 + A_{20} \longrightarrow A_{21}$          | $w_6 = k_6 x_6 x_{20}$           |
|    | $k_7$                                          |                                  |
| 7. | $A_6 + A_{21} \longrightarrow A_{18} + A_{20}$ | $w_7 = k_7 x_6 x_{21}$           |
|    | $K_8$                                          |                                  |
| 8. | $A_{21} \longrightarrow A_1 + A_{16}$          | $w_8 = k_8 x_{21}$               |
|    | <i>K</i> <sub>9</sub>                          |                                  |
| 9. | $A_2 + A_{21} \longrightarrow A_3 + A_{16}$    | $w_9 = k_8 x_2 x_{21}$           |

**Таблица 8.** 9-стадийная схема реакции карбоалюминирования олефинов и ацетиленов в присутствии катализатора (*CpMe*<sub>5</sub>)<sub>2</sub>*ZrCl*<sub>2</sub>

В качестве А<sub>і</sub>выступают вещества, приведённые в таблице 9.

**Таблица 9.** Список веществ 9-стадийной схемы реакции карбоалюминирования олефинов и ацетиленов в присутствии катализатора (*CpMe*<sub>5</sub>)<sub>2</sub>*ZrCl*<sub>2</sub>

| $A_1 = L_2 ZrCl_2,  L_2 = CpMe_5$               | $A_{12} = MeAlCH_2CH_2CHRCH_2$                |
|-------------------------------------------------|-----------------------------------------------|
| $A_2 = AlMe_3$                                  | $A_{13} = H_2 CCMeR$                          |
| $A_3 = L_2 Zr ClMe ClAlMe_2$                    | $A_{14} = L_2 Zr HClAlMe_3$                   |
| $A_4 = L_2 Zr Me ClAl Me_3$                     | $A_{15} = L_2 Zr CH_2 CH_2 (R) ClAlMe_3$      |
| $A_5 = ClAlMe_2$                                | $A_{16} = Me_2AlCH_2CH_2R$                    |
| $A_6 = CH_2 CHR$                                | $A_{17} = L_2 Zr CH_2 CHRCH_2 CH_2 RClAlMe_3$ |
| $A_7 = CH_2CHMeRL_2ZrClAlMe_3$                  | $A_{18} = H_2 CCRCH_2 CH_2 R$                 |
| $A_8 = CH_2 CHMeRAlMe_2$                        | $A_{19} = L_2 ZrC H_2 CHMeRClClAlMe_2$        |
| $A_9 = C_2 H_6$                                 | $A_{20} = L_2 Zr HClClAlMe_2$                 |
| $A_{10} = L_2 Zr(Cl) CH_2 CH_2 AlMe_2$          | $A_{21} = L_2 ZrC H_2 C H_2 RClClAlMe_2$      |
| $A_{11} = L_2 Zr(Cl)CH_2 CH_2 (R)CH_2 CHAlMe_2$ |                                               |

Натурные эксперименты по проведению реакций каталитического карбоалюминирования олефинов и ацетиленов в присутствии катализаторов  $Cp_2ZrCl_2$  и  $(CpMe_5)_2ZrCl_2$  проводились при трех температурах (15°C, 22°C и 30°C) и начальных концентрациях (мольные доли):

$$x_1 = 0.009, x_2 = 0.541, x_6 = 0.450$$

В ходе эксперимента наблюдались концентрации пяти веществ (*A*<sub>6</sub>, *A*<sub>8</sub>, *A*<sub>13</sub>, *A*<sub>16</sub>, *A*<sub>18</sub>) и выдавались их процентные соотношения.

#### 2.2 Постановка задачи многоэкстремальной оптимизации

Алгоритмы, развиваемые Нижегородской научной школой многоэкстремальной оптимизации, предполагают следующую постановку задачи<sup>1</sup>:

$$\varphi^* = \varphi(y^*) = \min \{ \varphi(y) \colon y \in D \},$$
  

$$D = \{ y \in \mathbb{R}^N \colon a_i \le y_i \le b_i, \ 1 \le i \le N \},$$
(5)

где целевая функция  $\varphi(y)$  удовлетворяет условию Липшица с соответствующей константой L, а именно

$$| \varphi(y_1) - \varphi(y_2) | \le L || y_1 - y_2 ||, y_1, y_2 \in D.$$

Используя кривые типа развертки Пеано y(x), однозначно отображающие отрезок [0, 1] на N-мерный гиперкуб P

$$P = \{ y \in \mathbb{R}^{N} : -2^{-1} \le y_{i} \le 2^{-1}, \ 1 \le i \le N \} = \{ y(x) : \ 0 \le x \le 1 \},\$$

исходную задачу можно редуцировать к следующей одномерной задаче:

 $\varphi(y_D(x^*)) = \min \{ \varphi(y_D(x)) : x \in [0,1] \}.$ 

Рассматриваемая схема редукции размерности сопоставляет многомерной задаче с липшицевой минимизируемой функцией одномерную задачу, в которой целевая функция удовлетворяет равномерному условию Гельдера (см. [4]), т.е.

$$|\varphi(y_D(x')) - \varphi(y_D(x''))| \le K |x' - x''|^{1/N}, x', x'' \in [0, 1],$$

где N есть размерность исходной многомерной задачи, а коэффициент K связан с константой Липшица L исходной задачи соотношением  $K \le 4L \sqrt{N}$ .

Различные варианты индексного алгоритма для решения одномерных задач и соответствующая теория сходимости представлены в работах [3], [5].

## 3. Индексный метод глобальной оптимизации

#### 3.1 Редукция размерности и множественные отображения

Редукция многомерных задач к одномерным с помощью разверток имеет такие важные свойства, как непрерывность и сохранение равномерной ограниченности разностей функций при ограниченности вариации аргумента. Однако при этом происходит потеря части информации о близости точек в многомерном пространстве, так как точка  $x \in [0,1]$  имеет лишь левых и правых соседей, а соответствующая ей точка  $y(x) \in \mathbb{R}^N$  имеет соседей по  $2^N$  направлениям. А при использовании отображений типа кривой Пеано близким в N-мерном пространстве образам y', y'' могут соответствовать достаточно далекие прообразы x', x'' на отрезке [0,1]. Как результат, единственной точке глобального минимума в многомерной задаче, что, естественно, ухудшает свойства одномерной задачи.

Сохранить часть информации о близости точек позволяет использование множества отображений

$$Y_L(x) = \{y^1(x), \dots, y^L(x)\}$$
(6)

вместо применения единственной кривой Пеано y(x) (см. [4], [7]). Каждая кривая Пеано  $y^{i}(x)$  из  $Y_{L}(x)$  может быть получена в результате поворота развертки вокруг начала координат. При этом найдется отображение  $y^{i}(x)$ , которое точкам многомерного пространства y', y'', которым при исходном отображении соответствовали достаточно далекие прообразы на отрезке [0,1], будет сопоставлять более близкие прообразы x', x''.

Максимальное число различных поворотов развертки, отображающей *N*-мерный гиперкуб на одномерный отрезок, составляет 2<sup>*N*</sup>. Использование всех из них является избыточным. В

<sup>&</sup>lt;sup>1</sup> Здесь применяются общепринятые обозначения для задач многоэкстремальной оптимизации. Следует помнить, что в приложении к задачам химической кинетики роль вектора x играет вектор кинетических параметров  $k_i$ .  $k_i$ .

используемой схеме (см. [7]) преобразование развертки осуществляется в виде поворота на угол  $\pm \pi/2$  в каждой из координатных плоскостей. Число подобных пар поворотов определяется

числом координатных плоскостей пространства, которое равно  $C_N^2 = \frac{N(N-1)}{2}$ , а общее число

преобразований будет равно N(N-1). Учитывая исходное отображение, приходим к заключению, что данный способ позволяет строить до N(N-1)+1 развертки для отображения N-мерной области на соответствующие одномерные отрезки.

#### 3.2 Параллельный индексный метод и локально-глобальная стратегия

Использование множества отображений  $Y_L(x) = \{y^1(x), ..., y^L(x)\}$  приводит к формированию соответствующего множества одномерных многоэкстремальных задач (7)

min {  $\varphi(y^{l}(x)): x \in [0,1], 1 \le l \le L.$ 

Каждая задача из данного набора может решаться независимо, при этом любое вычисленное значение  $z = \varphi(y')$ , y' = y'(x') функции  $\varphi(y)$  в *i*-й задаче может интерпретироваться как вычисление значения  $z = \varphi(y')$ ,  $y' = y^{s}(x'')$  для любой другой *s*-й задачи без повторных трудоемких вычислений функции  $\varphi(y)$ . Подобное информационное единство позволяет решать исходную задачу (5) путем параллельного решения индексным методом L задач вида (7) на наборе отрезков [0,1]. Каждая одномерная задача решается на отдельном процессоре. Для организации взаимодействия на каждом процессоре создается L очередей, в которые процессоры помещают информацию о выполненных итерациях.

Подробное описание решающих правил параллельного индексного алгоритма глобальной оптимизации приведено в работе [6].

Локально-адаптивный алгоритм является модификацией индексного метода глобального поиска, состоящей в том, что, начиная с некоторого шага, при выборе точек итераций используется дополнительная информация - текущие оценки плотности вероятности для расположения точки искомого оптимума. Оценки плотности определяются по значениям функционалов задачи, вычисленных в точках выполненных итераций. Таким образом, плотность переоценивается после каждой итерации, причем максимумы плотности соответствуют окрестностям точек текущих оптимальных значений. Подробно решающие правила локально-адаптивного метода приведены, например, в [6]. Существенным параметром этого метода является целое число  $0 \le \alpha \le 30$ , влияющее на характер сходимости. При  $\alpha = 0$ поиск носит глобальный характер, при  $\alpha = 30$  – локальный.

Смешанный алгоритм является модификацией индексного метода глобального поиска, состоящей в том, что, начиная с некоторого шага итерации, определяемые правилами индексного метода, чередуются с итерациями, определяемыми правилами локально-адаптивного алгоритма. Частота чередования является параметром метода.

## 4. Результаты вычислений

По экспериментальным данным поставлены 8 численных экспериментов, в результате которых были найдены константы скоростей стадий для 4-х схем реакции и для различных температур, в случае Ме-С связей.

Поскольку данные натурных экспериментов содержат погрешности, достичь значений функционала F, достаточно близких к нулю, часто не удаётся. Однако численные оценки глобального оптимума, полученные модифицированным индексным методом, позволяют решить значительную часть поставленных задач.

Характерное время получения численных оценок глобального оптимума, приведённых в работе, - 2-3 недели (для одной реакции) последовательным индексным методом, тогда как параллельный метод при запуске на 90-150 вычислительных ядрах (при текущей схеме распараллеливания) позволяет получать аналогичные оценки за считанные часы.

## 4.1 Et-C связи

Оценки констант скоростей элементарных стадий для 10-ти и 12-ти стадийных схем реакции карбоалюминирования в присутствии катализатора  $Cp_2ZrCl_2$  приведены в таблице 10 и 11, соответственно.

Сопоставления расчета эксперименту представлены на рисунках 1 и 2, соответственно.

**Таблица 10.** Константы скоростей элементарных стадий для 10-стадийной схемы реакции карбоалюминирования олефинов и ацетиленов в присутствии катализатора *Cp*<sub>2</sub>*ZrCl*<sub>2</sub>, *1/ч* 

| $k_1 =$ | 6215.977 | $k_4 =$   | 9517.975 | $k_7 =$ | 5023.656 | $k_{10} =$ | 197.410  |
|---------|----------|-----------|----------|---------|----------|------------|----------|
| $k_2 =$ | 3582.618 | $k_{5} =$ | 311.589  | $k_8 =$ | 3387.914 | $k_{11} =$ | 6261.753 |
| $k_3 =$ | 5165.258 | $k_6 =$   | 8.304    | $k_9 =$ | 2778.785 |            |          |

Значение функционала в этой точке равно F = 3.040.



**Рис. 1.** Сопоставление расчетных и экспериментальных данных для 10-стадийной схемы реакции карбоалюминирования олефинов и ацетиленов в присутствии катализатора *Cp*<sub>2</sub>*ZrCl*<sub>2</sub>

**Таблица 11.** Константы скоростей элементарных стадий для 12-стадийной схемы реакции карбоалюминирования олефинов и ацетиленов в присутствии катализатора *Cp*<sub>2</sub>*ZrCl*<sub>2</sub>, *1/ч* 

| $k_1 =$ | 6215.977 | $k_4 =$   | 9517.975 | $k_7 =$ | 5023.656 | $k_{10} =$ | 197.410  | $k_{13} =$ | 6261.753 |
|---------|----------|-----------|----------|---------|----------|------------|----------|------------|----------|
| $k_2 =$ | 3582.618 | $k_{5} =$ | 311.589  | $k_8 =$ | 3387.914 | $k_{11} =$ | 8608.858 |            |          |
| $k_3 =$ | 5165.258 | $k_6 =$   | 8.304    | $k_9 =$ | 2778.785 | $k_{12} =$ | 8280.793 |            |          |

Значение функционала в этой точке равно F = 2.336.



**Рис. 2.** Сопоставление расчетных и экспериментальных данных для 12-стадийной схемы реакции карбоалюминирования олефинов и ацетиленов в присутствии катализатора *Cp*<sub>2</sub>*ZrCl*<sub>2</sub>

Таким образом, 12-ти стадийная схема реакции карбоалюминирования олефинов и ацетиленов в присутствии катализатора  $Cp_2ZrCl_2$  с константами скоростей стадий из таблицы 11 описывает экспериментальные данные лучше, чем 10-ти стадийная схема на том же наборе констант для соответствующих стадий.

#### 4.2 Ме-С связи

Из уранения Аррениуса (5) методом наименьших квадратов была построена прямая зависимость *lnk* от *l/T*:

$$\ln k = \ln A - \frac{E_a}{R} \cdot \frac{1}{T},\tag{8}$$

из которой рассчитывались энергии активации и фактор частоты.

Константы скоростей  $k_i$ , энергии активации  $E_A$ , и частоты A столкновений реагирующих молекул элементарных стадий для 8-ми и 9-ти стадийных схем реакции карбоалюминирования в присутствии катализатора  $Cp_2ZrCl_2$  и  $(CpMe_5)_2ZrCl_2$  приведены в таблице 12 и 13, соответственно.

№ стадии k<sub>i</sub>, 1/ч  $E_A$ , ккал А, 1/ч 22°C 15°C 30°C 1 прямая 3651.282 963.296 6213.230 6.642 2.348E+08 2 прямая 1.428 3.823E+04 5301.671 1223.001 5755.712 9064.790 5 прямая 9.960E+10 2641.762 6318.821 9.808 6 прямая 5304.723 84.650 2.375E+64 3.825 3.520 7.607E+06 7 прямая 5812.840 5284.581 8269.808 4.154 8 прямая 452.127 198.221 2740.944 21.341 4.153E+18 1 обратная 7.869E+08 2581.947 7485.201 4862.523 7.066 2 обратная 7697.298 1150.064 8596.040 1.896 1.079E+05

**Таблица 12.** Константы скоростей  $k_i$ , энергии активации  $E_A$ , и частоты A столкновений реагирующих молекул элементарных стадий для 8-стадийной схемы реакции карбоалюминирования олефинов и ацетиленов в присутствии катализатора  $Cp_2ZrCl_2$ 

**Таблица 13.** Константы скоростей  $k_i$ , энергии активации  $E_A$ , и частоты A столкновений реагирующих молекул элементарных стадий для 9-стадийной схемы реакции карбоалюминирования олефинов и ацетиленов в присутствии катализатора  $(CpMe_5)_2ZrCl_2$ 

| № стадии   |          | <i>k<sub>i</sub></i> , 1/ч | Е <sub>А</sub> , ккал | А, 1/ч |           |
|------------|----------|----------------------------|-----------------------|--------|-----------|
|            | 15°C     | 22°C                       | 30°C                  |        |           |
| 2 прямая   | 24.882   | 1094.217                   | 1096.353              | 43.075 | 2.671E+34 |
| 3 прямая   | 5012.975 | 2963.111                   | 8005.526              | 5.643  | 7.498E+07 |
| 4 прямая   | 6382.100 | 9440.219                   | 9000.231              | 3.896  | 6.309E+06 |
| 5 прямая   | 554.666  | 1018.228                   | 1972.817              | 14.648 | 7.506E+13 |
| 7 прямая   | 4311.682 | 7464.450                   | 7793.124              | 6.749  | 6.357E+08 |
| 8 прямая   | 4818.578 | 1245.889                   | 6315.464              | 3.595  | 1.553E+06 |
| 9 прямая   | 6772.312 | 6884.311                   | 9357.148              | 3.776  | 4.782E+06 |
| 1 обратная | 5377.660 | 7635.653                   | 9823.151              | 6.936  | 1.024E+09 |

Зависимость (8) для для 1-й обратной стадии 9-ти стадийной схемы реакции карбоалюминирования олефинов и ацетиленов в присутствии катализатора  $(CpMe_5)_2 ZrCl_2$  приведена на рисунке 3.



**Рис. 3.** Зависимость *lnk* от *1/T* для 1-й прямой элементарной стадии 9-стадийной схемы реакции карбоалюминирования олефинов и ацетиленов в присутствии катализатора (*CpMe*<sub>5</sub>)<sub>2</sub>*ZrCl*<sub>2</sub>

Схемы реакции карбоалюминирования олефинов и ацетиленов, представленные в таблицах 6 и 8, имеют структурно-одинаковые 1-ю и 2-ю элементарные стадии, отличающиеся только используемым катализатором. Сравнивая значения энергий активации из таблиц 12 и 13 для этих стадий, можно сделать вывод: энергия активация первой обратной стадии для обеих схем имеет сравнительно одинаковое количественное значение, но при использовании катализатора  $Cp_2ZrCl_2$  для осуществления 2-й элементарной стадии молекулы должны преодолеть меньший энергетический барьер, чем при использовании катализатора  $(CpMe_5)_2ZrCl_2$ .

## 5. Заключение

Применение параллельного индексного метода глобальной оптимизации позволяет получать хорошие численные оценки констант скоростей элементарных стадий реакции (и сопутствующих величин), что продемонстрировано на примере реакции карбоалюминирования олефинов и ацетиленов, за приемлемое время (применяемые ранее методики требовали нескольких месяцев вычислений и частичного ручного контроля с применением эвристик). Однако и в рамках данного исследования пока остаются открытыми такие вопросы, как выбор диапазонов изменений искомых кинетических констант (область поиска глобального оптимума) и учёт структурных связей между задачами (например, для одной и той же реакции при разных температурах кинетические константы растут с ростом температуры). Один из возможных способов учёта таких связей – построение аггрегированной задачи, что, однако, может привести к появлению функциональных ограничений и увеличению размерности в разы.

## Литература

- 1. Тихонова М.В., Губайдуллин И.М., Спивак С.И. Численное решение прямой кинетической задачи методами Розенброка и Мишельсена для жестких систем дифференциальных уравнений // Ж. Средневолжского математического общества. Т.12. №2. 2010. С. 26–33.
- Parfenova L. V., Gabdrakhmanov V. Z., Khalilov L. M., Dzhemilev U. M. On study of chemoselectivity of reaction of trialkylalanes with alkenes, catalyzed with Zr π-complexes // J. Organomet. Chem. V. 694. №. 23. 2009. P. 3725–3731.
- 3. Стронгин Р.Г. Поиск глобального оптимума. М.: Знание, 1990.
- 4. Стронгин Р.Г. Параллельная многоэкстремальная оптимизация с использованием множества разверток // Ж. вычисл. матем. и матем. физ. Т.31. №8. 1991. С. 1173–1185.
- 5. Strongin R.G., Sergeyev Ya.D. Global optimization with non-convex constraints. Sequential and parallel algorithms. Kluwer Academic Publishers, Dordrecht, 2000.
- 6. Баркалов К.А. Ускорение сходимости в задачах условной глобальной оптимизации. Нижний Новгород: изд-во Нижегородского гос. ун-та, 2005.
- Баркалов К.А., Рябов В.В., Сидоров С.В. Использование кривых Пеано в параллельной глобальной оптимизации // Материалы Девятой международной конференции-семинара "Высокопроизводительные параллельные вычисления на кластерных системах", Владимир, 2009. С. 44–47.
- 8. Баркалов К.А., Рябов В.В., Сидоров С.В. О некоторых способах балансировки локального и глобального поиска в параллельных алгоритмах глобальной оптимизации // Ж. Вычислительные методы и программирование. Т.11. 2010. С. 382–387.