Вычислительная технология распознавания цветных изображений по критериям сопряженности

Р.К. Захаров, В.А. Фурсов

Самарский государственный аэрокосмический университет имени академика С.П. Королёва (национальный исследовательский университет)

В работе рассматриваются методы, алгоритмы и информационная технология распознавания цветных изображений по критериям сопряженности и с использованием разложений по базису Карунена-Лоэва, в частности, приводятся алгоритмы отбора информативных признаков по критериям сопряженности. Рассматриваются возможности применения для этих алгоритмов различных типов декомпозиции.

1. Постановка задачи

Предполагается, что имеется M изображений каждого из K объектов. Каждое изображение представляется вектором $^{\mathbf{x}=[x_1,x_2,...,x_N]^T}$ размерности N , где $^{x_1,x_2,...,x_N}$ – признаки. Векторы, соответствующие изображениям одного объекта, составляют класс. Совокупность векторов признаков всех классов образует обучающую выборку. Решение задачи распознавания состоит в конструировании решающей функции $^{f:R^N} \mapsto \{0,1,2,...,K\}$, которая каждому вектору $^{\mathbf{x}}$ ставит в соответствие некоторый класс. Для уменьшения числа неправильных классификаций вводится также класс с номером 0 , соответствующий отказу в распознавании.

Из множества $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_M\}$ векторов каждого класса составляется $N \times M$ -матрица

$$\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_M]. \tag{1}$$

Этой матрице ставятся в соответствие так называемая информационная $M \times M$ -матрица:

$$\mathbf{A} = \mathbf{X}^T \mathbf{X} \tag{2}$$

и ковариационная $N \times N$ -матрица

$$\mathbf{B} = \mathbf{X}\mathbf{X}^T . \tag{3}$$

Предполагается, что $^{rank\mathbf{A}\,=\,M}$. Известно также, что собственные значения $^{\lambda_i}(\mathbf{A})$, $^{i\,=\,\overline{1,M}}$ матрицы $^{\mathbf{A}}$ совпадают с ненулевыми собственными значениями матрицы $^{\mathbf{B}}$, а собственные векторы матрицы $^{\mathbf{B}}$, соответствующие ненулевым собственным значениям, образуют ортогональный базис (разложение Карунена-Лоэва).

2. Исследуемые решающие правила

Наряду с широко известными решающими правилами, основанными на вычислении евклидовых расстояний и меры близости Махаланобиса в работе исследуются новые, развиваемые авторами, подходы. В частности, исследуются алгоритмы распознавания, основанные на использовании в качестве мер близости показателей сопряженности. Соответствующие решающие правила строятся на следующей основе. В рассмотрение вводится

так называемый показатель сопряженности с подпространством, натянутым на векторы признаков образов объектов из заданного класса:

$$R_{k} = \frac{\mathbf{x}^{T} \mathbf{X}_{k} \left[\mathbf{X}_{k}^{T} \mathbf{X}_{k} \right]^{-1} \mathbf{X}_{k}^{T} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}$$
 (4)

Здесь $^{\mathbf{x}}$ – вектор признаков неизвестного образа, предъявленный для установления близости к k -му классу, а $^{\mathbf{X}_{k}}$ – $^{N\times M}$ -матрица, составленная из векторов образов, принадлежащих k -му классу.

Наряду с указанным, в работе рассматривается также показатель сопряженности с нульпространством транспонированной матрицы \mathbf{X}_{k} , который вычисляется как

$$S_k = \frac{\mathbf{x}^T \mathbf{T}_k \mathbf{T}_k^T \mathbf{x}}{\mathbf{x}^T \mathbf{x}} \tag{5}$$

Здесь $^{\mathbf{T}_k}$ - матрица, составленная из собственных векторов, соответствующих нулевым собственным значениям матрицы $^{\mathbf{B}_k = \mathbf{X}_k \mathbf{X}_k^T}$, а $^{\mathbf{X}_k}$ - $^{N \times M}$ -матрица, та же, что и в (5).

С использованием указанных показателей сопряженности в предположении, что для каждого (k -го) класса сформирована одна из следующих $^{N\times N}$ -матриц $^{\mathbf{Q}_{(9)}}$:

$$\mathbf{Q}_{k,R} = \mathbf{X}_k \left[\mathbf{X}_k^T \mathbf{X}_k \right]^{-1} \mathbf{X}_k^T \tag{6}$$

или

$$\mathbf{Q}_{k,S} = \mathbf{T}_k \mathbf{T}_k^T \,, \tag{7}$$

соответствующая решающая функция $f(\mathbf{x})$ строится следующим образом. Вектор \mathbf{x} принадлежит m -му классу, то есть $f(\mathbf{x}) = m, \quad m = 1, 2, ... K$,

если
$$R_{m} = \max_{k} R_{k}$$
, где $R_{k} = \frac{\mathbf{x}^{T} \mathbf{Q}_{k,R} \mathbf{x}}{(\mathbf{x}^{T} \mathbf{x})}$, (8)

либо
$$S_m = \min_k S_k$$
, где $S_k = \frac{\mathbf{x}^T \mathbf{Q}_{k,s} \mathbf{x}}{(\mathbf{x}^T \mathbf{x})}$. (9)

При использовании порогового значения T_0 , решающая функция дополняется правилом

$$f(\mathbf{x}) = 0$$
, если $R_{\text{m}} \le 1 - T_0$ или $S_{\text{m}} \ge T_0$. (10)

3. Применение к распознаванию цветных изображений.

В работе изучаются вопросы построения процедур распознавания цветных изображений с использованием решающих правил, основанных на показателях сопряженности. В частности, исследуются вопросы построения эффективных алгоритмов отбора информативных признаков по показателям сопряжености (4), (5). Один из основных вопросов, который возникает при построении процедур распознавания цветных изображений: насколько информативными оказываются компоненты, описывающие цветовые составляющие изображений.

В работе исследуется качество распознавания при различных вариантах представления многокомпонентных изображений, в т.ч. при их разложении по ортогональным базисам

(Карунена-Лоэва). Для различных вариантов представлений изображений сравниваются результаты, полученные при использовании различных решающих правил. В частности, проясняется вопрос зависимости качества распознавания от типа цветовых пространств, которые используются для представления дополнительных цветовых компонент векторов признаков.

4. Применение к задаче кластеризации цветных изображений.

Известно, что решение о принадлежности образа классу может оказаться ошибочным в случае, если векторы одного класса обучающей выборки сильно отличаются друг от друга. Известный путь преодоления этой проблемы состоит в разбиении обучающих классов на подклассы — кластеризации. В работе исследуется эффективность применения для формирования кластеров в качестве меры близости показателей сопряженности.

Для класса представленного в обучающей выборке множеством $\{x_1, x_2, ..., x_M\}$ векторов образов алгоритм состоит в следующей последовательности шагов: выбор двух наиболее удаленных (по косинусу угла между векторами) образа, например, x_1 и x_2 (инициализация матриц $x_1 = [x_1]$ и $x_2 = [x_2]$); произвольный выбор вектора x_1 из числа оставшихся и вычисление показателя сопряженности со столбцовыми пространствами матриц x_1 и x_2 ; добавление этого вектора x_1 в качестве нового столбца к матрице, соответствующей ближайшему классу. Алгоритм может применяться к каждому из полученных кластеров для дальнейшего разбиения на подклассы.

При обработке цветных изображений большое влияние на качество кластеризации также может оказывать тип цветового пространства в котором представляются изображения.

5. Задачи исследования параллельных алгоритмов

Применение расширенных матриц признаков, включающих дополнительные цветовые составляющие, приводит к существенному возрастанию вычислительных затрат. Поэтому в работе исследуются различные схемы декомпозиции, для построения параллельных и распределенных алгоритмов.

Экспериментальные исследования проводятся на вычислительном кластере. Цель экспериментов состоит в проверке условий изоэффективности при различной вычислительной сложности задачи. Результатом будут рекомендации по выбору числа вычислительных узлов в зависимости от объема обучающей выборки для каждого типа решающего правила.

Литература

- 1. Zhao W., Chellappa R., Rosenfeld A., Phillips P.J. Face Recognition // A Literature Survey, ACM Computing Surveys, 2003. P. 399-458.
- 2. Turk M.A., Pentland A.P. Face Recognition Using Eigenfaces, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Maui, Hawaii, USA, 3-6 June 1991. P. 586-591.

- 3. Belhumeur P.N., Hespanha J.P., Kriegman D.J. Eigenfaces vs. Fisherfaces: Recognition using Class Specific Linear Projection, Proc. of the 4th European Conference on Computer Vision, ECCV'96, 15-18 April 1996, Cambridge, UK, P. 45-58.
- 4. Fursov V.A., Kozin N.E. Stage-wise learning of radial neural networks // Proceedings of The 12th ISPE International Conference on Concurrent Engineering: Research and Applications, Focus Symposium Recursive Dynamics and Iterated Mappings in Service Modeling and Design, Ft. Worth/Dallas, USA, 25 29 July, pp. 391-396.
- 5. Fursov V.A., Kozin N.E. Algorithm for parallel learning of radial neural networks, Proceedings of The IASTED International Conference on Automation, Control and Applications (ACIT-ACA 2005), Novosibirsk, June 20-24, Russia. 2005. P. 481-485.