Реализация на высокопроизводительных вычислительных системах математической модели ветровых течений в Керченском проливе^{*}

В.Н. Дацюк¹, Л.А. Крукиер¹, А.Л. Чикин²

Южно-Российский региональный центр информатизации¹ Южный научный центр РАН²

Представленная математическая модель описывается уравнениями движения несжимаемой вязкой жидкости. Задача решается конечно-разностными методами с использованием противопотоковых схем и численно реализована на высокопроизводительных вычислительных системах. Данная модель позволяет рассчитывать течения в случае изменения береговой линии, а ее трехмерность дает возможность вычислять скорости на различных горизонтах. Проведено сравнение эффективности параллельной реализации модели на различных вычислительных системах.

Введение

Одним из основных этапов решения задач, связанных с моделированием гидрофизических процессов в водоемах, является расчет гидродинамических параметров течения. Определенный интерес представляют водоемы с большой неоднородностью поля глубин. Под большой неоднородностью глубин понимается наличие как глубоководной области, так и обширных мелководных районов (прибрежная зона, внутренние заливы и лиманы), глубина в которых соразмерна с перепадом уровня воды. В судоходной части Керченского пролива глубины составляют 8 – 10 м, а в южной его части до 19 м. В то же время в прибрежных районах, Таманском и Динском заливах глубина составляет 0,5 – 4 м [1]. Такое распределение глубин позволяет говорить о большой их неоднородности. В настоящее время при расчете параметров течений в водоемах с указанной топологией дна обычно используются специальные координатные системы (окоординаты), возможно использование криволинейных сеток или проведение предварительного преобразования исходной нерегулярной области в регулярную. Однако, данные методики заметно усложняют как саму систему дифференциальных уравнений, так и ее численное решение.

В связи с этим для численного исследования течений в Керченском проливе использовалась разработанная автором двухслойная модель гидродинамики [2]. Достоинство данного подхода заключается в том, что решение подобных задач происходит без предварительного преобразования расчетной области, используя конечно-разностные методы с применением равномерных прямоугольных сеток. Хотя результаты расчетов нельзя считать высокоточными, их можно использовать в качестве разведочного анализа или начального приближения в более сложных моделях.

Постановка задачи

Суть подхода в следующем. Проведем горизонтальную секущую плоскость P, отстоящую от невозмущенной поверхности водоема PO на глубине, равной максимальной глубине мелководья h(x, y) (рис.1), и разобьем всю область моделирования на два слоя – верхний – I и нижний слой II. Таким образом, I –все мелководье и верхняя часть глубоководного слоя, слой II – содержит глубоководную область. Предполагается, что эффект осушения из-за сгона воды может присутствовать только в мелководных районах и не может происходить в глубоководной части.

^{*} Работа выполнена при финансовой поддержке РФФИ. Грант 09-01-00023-а.

Рис. 1. Вертикальный разрез исследуемого водоема

На движение воды в слое I влияет ветер, а движение в слое II инициируется как движением слоя I, так и градиентами давления.

Движение воды в слое I задается уравнениями мелкой воды

$$\frac{\partial u_s}{\partial t} + u_s \frac{\partial u_s}{\partial x} + v_s \frac{\partial u_s}{\partial y} - \Omega v_s = -g \frac{\partial \zeta}{\partial x} + v_{xy} \left(\frac{\partial^2 u_s}{\partial x^2} + \frac{\partial^2 u_s}{\partial y^2} \right) + \frac{\tau_{xx}}{H} - \frac{\tau_{bx}}{H} + F_x (x, y), \qquad (1)$$

$$\frac{\partial v_s}{\partial t} + u_s \frac{\partial v_s}{\partial x} + v_s \frac{\partial v_s}{\partial y} + \Omega u_s = -g \frac{\partial \zeta}{\partial y} + v_{xy} \left(\frac{\partial^2 v_s}{\partial x^2} + \frac{\partial^2 v_s}{\partial y^2} \right) + \frac{\tau_{xy}}{H} - \frac{\tau_{by}}{H} + F_y (x, y), \qquad (2)$$

$$\frac{\partial \zeta}{\partial t} + \frac{\partial H u_s}{\partial x} + \frac{\partial H v_s}{\partial y} = 0.$$

$$(3)$$

В уравнениях (1)–(3)
$$u_s = \frac{1}{H} \int_{-h}^{\zeta} u dz$$
, $v_s = \frac{1}{H} \int_{-h}^{\zeta} v dz$, $H = h + \zeta$; $h = h(x, y)$ – глубина

мелководного слоя; $u_s = u_s(x, y, t), v_s = v_s(x, y, t)$ – скорости в слое I; функции $F_x(x, y)$ и $F_y(x, y)$ описывают взаимодействие верхнего и нижнего слоев между собой; τ_{sx}, τ_{sy} – проекции на оси ОХ и ОҮ силы трения ветра о поверхность водоема; τ_{bx}, τ_{by} – проекции на оси ОХ и ОҮ силы трения жидкости о дно (или о глубоководный слой воды). Эти величины зависят от скорости ветра $\overline{W}_B = \{W_x; W_y\}_{u \text{ течения}} \overline{W}_T = \{u_s; v_s\}_{u \text{ определяются так [3]:}$ $\overline{\tau}_s = \gamma |\overline{W}_B | \overline{W}_B, \ \overline{\tau}_b = \beta |\overline{W}_T | \overline{W}_T,$ где $|\overline{W}_B| = \sqrt{W_x^2 + W_y^2}, \ |\overline{W}_T| = \sqrt{u_s^2 + v_s^2}, \ \beta(x, y)$ – коэффициент трения верхнего слоя

жидкости о дно (или о глубоководный слой); ү – коэффициент трения ветра о слой I.

Движение воды в слое II задается уравнениями движения несжимаемой вязкой жидкости

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} - \Omega v = -\frac{1}{\rho} \frac{\partial p}{\partial x} + v_{xy} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) + \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right),$$
(4)

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} + \Omega u = -\frac{1}{\rho} \frac{\partial p}{\partial y} + v_{xy} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) + \frac{\partial^2 v}{\partial z^2} + \frac{\partial^2 v}{\partial z^2} \right)$$
(5)

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0.$$
(6)

К системе уравнений (4) –(6) добавляется уравнение гидростатического давления $p = g \rho (\zeta - z) + p_a.$ (7)

В (4) – (7) u, v, w – компоненты скорости; x, y, z, t – пространственные переменные и время соответственно; V_{xy} , V_z – коэффициенты горизонтальной и вертикальной вязкости соответственно; ρ – плотность воды; g = 9.8 м/с² – ускорение силы тяжести; p_a – атмосферное давление.

Приведенные системы замыкаются соответствующими граничными условиями. Вдоль твердой границы ставятся условия скольжения или задаются скорости втекания или вытекания воды. На границе между слоями $\partial \Omega_1$ ставится условие равенства скоростей

$$u\big|_{\partial\Omega_l} = u_s, v\big|_{\partial\Omega_l} = v_s$$

Функции $F_x(x, y)$ и $F_y(x, y)$, описывающие взаимодействие I и II слоя, задаются следующим образом:

$$F_x(x, y) = \frac{uw}{H}\Big|_{\partial\Omega_l}, \ F_y(x, y) = \frac{vw}{H}\Big|_{\partial\Omega_l}$$

Вычислительные эксперименты

Особенностью моделирования гидродинамики Керченского пролива является наличие косы Тузла. Тузлинский нанос – это песчаная полоса, полупогруженная в илы. Коса растет в результате типичной аккумуляции береговых наносов. В 1925 году во время сильного южного шторма в море прорвало косу вблизи Таманского берега, и она превратилась в остров, отделенный от мыса Тузла проливом, который достиг через некоторое время ширины нескольких километров. Средняя глубина пролива между мысом Тузла (Тамань) и надземной частью косы не превышает 0,3-0,6 м. На расстоянии 2,5 км от мыса имеется искусственная промоина глубиной порядка 1,3 м и шириной не более 30 м. В 2003 г. со стороны Таманского полуострова на месте прежней косы была частично насыпана дамба.

Характерной ситуацией в Керченском проливе является смена течений с Азовоморского на Черноморское или наоборот. С помощью построенной математической модели было численно исследована возможная динамика изменения течения с Азовоморского на Черноморское.

В течение первого часа направление течения изменилось, в основном, в примыкающих к проливу заливах. Затем Черноморское течение начинает формироваться в южной части пролива, но течения в протоках вокруг о. Тузла носят северный характер (рис.2).

Рис. 2. Картина течения в Керченском проливе через 2 часа после смены ветра с северного на южное направление

Рис. 3. Картина течения в Керченском проливе через 3 часа после смены ветра с северного на южное направление

Через три часа после смены направления ветра Черноморское течение занимает почти всю южную часть пролива (рис.3). Исключение составляет течение через створ между о. Тузла и Таманским полуостровом. Очень слабые течения наблюдаются в северной и Павловской узостях. К концу седьмого часа Черноморское течение полностью формируется.

Рис. 4. Поле скоростей в Керченском проливе при отсутствии дамбы вдоль косы Тузла

Рис. 5. Поле скоростей в Керченском проливе при наличии дамбы вдоль косы Тузла

С помощью построенной математической модели была численно исследована возможная картина течений в центральной части пролива при отсутствии или наличии дамбы. Так, например, при действии юго-западного ветра в отсутствии дамбы примерно половина объема воды, проходящей через станцию III, нагоняется в Таманский залив, а другая половина движется вдоль северной стороны острова Тузла в сторону Азовского моря (рис.5). При наличии дамбы расход воды через станцию III значительно сокращается, и вода в Таманский залив поступает, в основном, с северной стороны о. Тузла, но движется уже в юго-восточном направлении (рис.6).

Анализ численной реализации

Для решения систем линейных алгебраических уравнений, возникающих при дискретизации исходных дифференциальных уравнений, использовалась библиотека параллельных подпрограмм Aztec. В этой библиотеке реализован набор итерационных методов Крылова для решения систем линейных алгебраических уравнений с разреженными матрицами. Распараллеливание выполнено с использованием коммуникационной библиотеки MPI. Особенностью итерационных методов является многократное использование операции умножения матрицы на вектор. Профилирование программы показало, что на эту процедуру приходится более 50% всех вычислительных затрат. Поэтому оптимизации параллельной версии этой подпрограммы было уделено большое внимание. Тем не менее, из-за большого числа коммуникационных операций трудно рассчитывать на высокую степень масштабируемости этой процедуры и соответственно всей программы в целом. Тестирование показало, что использование этих методов предъявляет высокие требования к коммуникационной среде.

На задаче расчета течений в Керченском проливе было протестировано время счета на трех вычислительных системах:

1. на кластере IBMX с 2-х ядерными процессорами Intel Xeon 5160 и коммуникационной сетью DDR Infiniband;

2. на кластере INFINI с процессорами Intel Pentium 4 3.4 Ггц и коммуникационной сетью SDR Infiniband;

3. на рабочей станции QUAD с 4-х ядерным процессором Q6600 с тактовой частотой 2.4 Ггц и оперативной памятью 4Гбайт.

Рассматривалось три размера разностных сеток с шагами по горизонтали 60 м, 40 м, 20 м с максимальным числом неизвестных 626000, 1414000 и 5670000 соответственно. При тестировании расчет проводился для 200 временных шагов.

Как и следовало ожидать, наибольшее ускорение (Sp) прослеживается на кластере IBMX, с коммуникационной сетью DDR Infiniband (Таблица 1). Для самой грубой сетки (h=60м) линейное ускорение на этой платформе сохраняется для числа узлов $n_p \leq 4$. В то время как, на кластере с однократной скоростью Infiniband ускорение начинает отклоняться от линейного уже для $n_p \leq 2$. И совершенно неоправданным представляется запуск нескольких MPI процессов на многоядерных вычислительных узлах (рабочая станция QUAD).

	Сетка h=60 м					
np	INFINI		IBMX		QUAD	
	(сек.)	Sp	(сек.)	Sp	(сек.)	Sp
1	1858	1,0	1677	1,0	1203	1,0
2	971	1,9	853	2,0	1008	1,2
3	714	2,6	570	2,9	1421	0,8
4	545	3,4	435	3,9	1648	0,7
5	470	4,0	357	4,7	-	
6	405	4,6	313	5,4	-	
7	362	5,1	273	6,1	-	
	Сетка h=40 м					
1	3896	1,0	3828	1,0	2740	1,0
2	2132	1,8	2015	1,9	2154	1,3
3	1542	2,5	1376	2,8	2865	0,95
4	1212	3,2	1066	3,6	2920	0,93
5	1029	3,8	881	4,3	-	
6	903	4,3	758	5,1	-	
7	802	4,9	681	5,6	-	
	Сетка h=20 м					
1	mem	-	15182	1,0	mem	-
2	mem	-	8097	1,9	mem	-
3	mem	-	5818	2,6	-	
4	mem	-	4503	3,4	-	
5	mem	-	3771	4,0	-	
6	mem	-	3304	4,6	-	
7	mem	-	3098	4,9	-	

Таблица 1. Сравнение производительности различных вычислительных платформ.

На сетке (h=40м) приоритеты в вычислительных системах сохраняются, однако коэффициент ускорения снижается.

На мелкой сетке (h=20м), когда число неизвестных становится очень большим, подобные задачи решаются только на кластере IBMX. При попытке решения этих задач на системах INFINI или QUAD возникают проблемы с памятью.

Численное исследование показало, что при использовании технологии MPI на вычислительной системе QUAD с 4-х ядерным процессором производительность немного возрастает при подключении 2-го ядра, а затем падает при подключении последующих. В то время, как на системах с распределенной памятью INFINI и IBMX наблюдается хороший рост ускорения при увеличении числа вычислительных узлов. Заметим, что на вычислительном кластере IBMX с 2-ядерным процессором на каждом узле запускался только один счетный процесс. Использование второго ядра, так же, как и на системе QUAD приводила к деградации производительности узла.

Заключение

Сравнение результатов расчета с наблюденными данными показало, что представленная математическая модель достаточно адекватно описывает гидродинамику течений в Керченском проливе. Данная модель позволяет рассчитывать течения в случае изменения береговой линии, а ее трехмерность дает возможность вычислять скорости на различных горизонтах.

Проведенное нами исследование ставит под сомнение целесообразность создания кластеров с большим числом ядер на узлах. По крайней мере, нужно отдавать себе отчет, для решения

каких задач будет преимущественно использоваться вычислительная система и насколько эффективно будут выполняться программы на той или иной конфигурации вычислительных узлов.

Литература

- 1. Карта Керченского пролива М 1:100000. Главное управление навигации и океанографии, С.-Пб, 2003.
- 2. Чикин А.Л. Об одном из методов расчета параметров течений в водоемах с большой неоднородностью глубин// Водные ресурсы, 2005. Т. 32. № 1. С. 55-60.
- Филиппов Ю.Г. Об одном способе расчета морских течений //Тр. ГОИН. 1970. Вып. 103. С.87-94.