Численное моделирование динамики ротора мощных питательных насосов ТЭС с учетом гидродинамических сил, возникающих в радиальном уплотнении

А.Ю. Ницкий

Работа посвящена численному моделированию течения трехмерного тонкого, турбулентного слоя жидкости в щелевых уплотнениях мощных питательных насосов. Разработана численная модель динамики консольного ротора, модель пространственного течения турбулентной среды в радиальной щели уплотнения. Проведен параметрический анализ динамики модельного ротора с учетом влияния гидродинамических сил в щелевом уплотнении.

1. Введение

Ротор мощного питательного насоса обычно рассматривают как упругую систему с распределенными параметрами (массой и жесткостью) и нестационарными связями, обладающего большим числом степеней свободы.

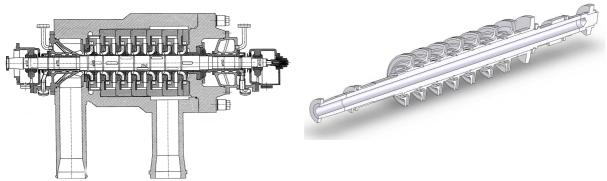


Рис. 1. Разрез мощного питательного насоса и трехмерная модель ротора

Уравнения движения могут быть записаны в следующем виде:

$$[M]\{\ddot{q}\} + [B]\{\dot{q}\} + [C]\{q\} = \{F(t)\},\tag{1}$$

где [М], [В], [С] – матрицы масс (инерции), демпфирования и жесткости системы;

 $\{q\}, \{\dot{q}\}, \{\ddot{q}\}$ – обобщенные перемещения узлов и их производные;

 ${F(t)}$ – обобщенные силы [1].

Построение математической модели ротора сводиться к представлению принципиальной схемы ротора в виде конечно-элементной модели. При этом выбираются типы конечных элементов (КЭ) для моделирования упругих свойств ротора и упругодемпфирующих свойств опор.

Упругие и демпфирующие свойства подшипниковых опор и цилиндрических щелевых уплотнений питательных насосов определяются по известным методикам [2,3,4]. Учет осевых сил действующих в радиальных щелях уравновешивающих устройств при исследовании устойчивости осевых колебаний проводился в работах [3,4,5,6]. Результаты экспериментального определения угловой жесткости в радиальных щелях разгрузочных устройств приведены в монографии Чегурко Л.Е. [7].

Целью работы является проведение физического и численного моделирования динамики невращающегося ротора с учетом гидродинамических сил в тонких турбулентных радиальных слоях щелевых уплотнений.

2. Теоретическая часть

2.1 Физический эксперимент

В связи с тем, что в литературе отсутствуют данные по определению гидродинамической жесткости в радиальных щелях уплотнений питательных насосов, предварительно проведены стендовые исследования полей давления в уплотнениях модельного ротора. Полученные экспериментальные данные использованы для оценки точности разработанной численной модели течения турбулентного потока жидкости в радиальной щели. Испытания проводились на специальной экспериментальной установке (рис. 1.), представляющей собой комплекс, состоящий из центробежного многоступенчатого насоса 1 «ЦНС–38», системы трубопроводов, накопительного бака 2 и непосредственно стендовой установки. Установка, позволяющая моделировать колебания ротора с учетом гидродинамических сил в уплотнениях, представляет собой массивный корпус 3 с консольным стержнем 4, на свободном конце расположен диск 5, формирующий исследуемую радиальную щель 6 с корпусом 3. В качестве рабочей среды используется жидкость – вода с температурой порядка 30°С. Вода в исследуемую щель подается насосом и сбрасывается в накопительный бак. Расход воды и уровень давления регулируется задвижками на входе и выходе насоса.

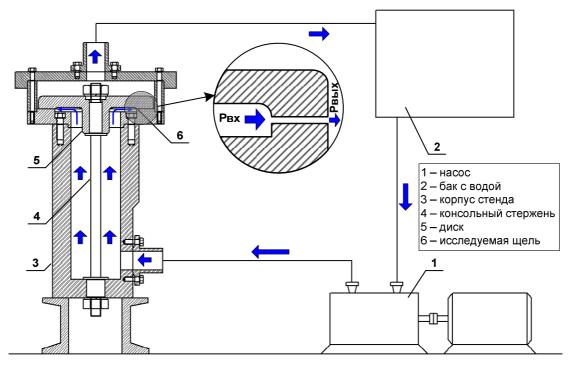


Рис. 2. Принципиальная схема стендовой установки

Измерение параметров жидкости (давление в различных точках, расход, температура) и линейных перемещений диска по осям X,Y,Z осуществляется специальной аппаратурой с последующей записью и обработкой на ЭВМ.

Экспериментально решены две задачи: проведена оценка влияния гидродинамических сил на собственные формы и собственные частоты модельной колебательной системы и определены поля давления жидкости в тонком, радиальном, турбулентном, неравновесном слое жидкости.

Используя нестационарный метод по виду временной формы свободных, затухающих колебаний модельного ротора определены собственные частоты на воздухе и воде. На рисунках 3-5 приведены колебания центра диска консольного стержня.

В таблице 1 приведены значения собственных частот и логарифмические декременты колебательной системы при различных давлениях на входе в радиальную щель, определенные экспериментально на стендовой установке.

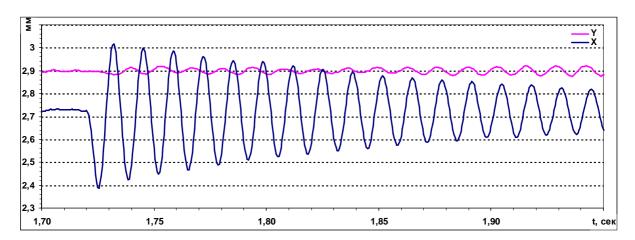


Рис. 3. Реализация периодического колебательного процесса модельного ротора на воздухе

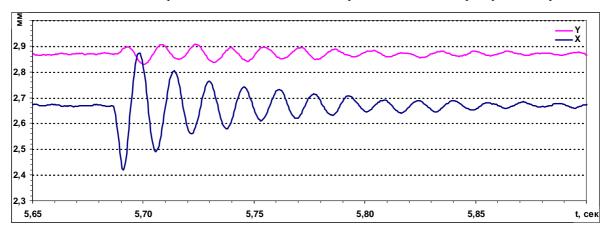
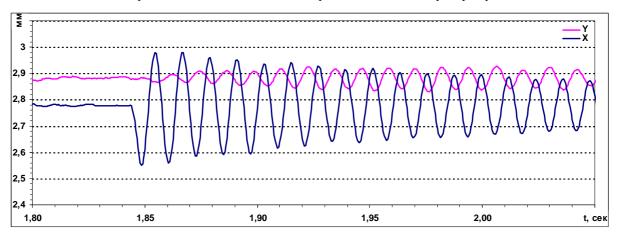



Рис. 4. Реализация периодического колебательного процесса модельного ротора при заполнении водой

Рис. 5. Реализация периодического колебательного процесса модельного ротора при давлении на входе щели 0,44 МПа

Таблица 1. Зависимость собственных частот колебаний от перепада давления в щели

	воздух	вода	вода	вода	вода	вода
ΔP , M Π a	0	0	0,14	0,24	0,34	0,44
$\delta = \ln A_k / A_{k+1}$	0,0769	0,422	0,31	0,145	0,068	0,02
Частота (Гц)	74	64	71	74	78	82

Как видно из таблицы 1., декремент колебаний в воде почти в пять раз выше, чем в воздухе, что приводит к снижению собственной частоты колебательной системы с 74 до 64 Гц. При

увеличении перепада давления в радиальной щели увеличивается собственная частота. Рост собственной частоты определяется формированием гидродинамической жесткости в радиальной щели при дросселировании через неё жидкости.

Используя метод экспериментального определения нестационарного поля давления в щелевом уплотнении при колебании ротора А.С. № 1163178 [8], получены эпюры давления в сечениях радиальной щели как в стационарном, так и не стационарном движении радиальной щели.

Нестационарное движение стенок радиальной щели определяется колебанием консольного стержня. При этом диск, образующий с корпусом стенда радиальную щель, совершает угловые колебания. Течение жидкости в радиальной щели за один период затухающих колебаний проходит по зазору, изменяющему свою геометрию от конфузорного до диффузорного.

В конфузорной щели на входе в щель практически отсутствует падение давления, в диффузорной щели падение давления происходит практически на весь уровень подводимого к щели давления. Таким образом, получены экспериментальные значения собственных частот модельной колебательной системы и поля давлений в радиальных щелях при угловых колебаниях одной из поверхностей образующих радиальную щель. Эти данные могут быть использованы в качестве контрольных при отработке численных методов расчета полей давления и динамики молельной колебательной системы.

2.2 Численный эксперимент

Численное решение задачи динамики модельной колебательной системы разобьем на две задачи:

- 1. Численное определение трехмерного поля давления в радиальной щели для определения гидродинамической жесткости уплотнения.
- 2. Численное моделирование свободных колебаний модельного ротора с учетом гидродинамической жесткости и сил вязкого сопротивления в радиальной щели.

2.2.1 Конечно-элементная модель консольного ротора

Схема нагружения консольного ротора приведена на рис. 6.

Рис. 6. Расчетная схема консольного ротора

Уравнения свободных колебаний консольного ротора можно записать в виде:

$$\begin{vmatrix} m + m_{xx} & 0 & 0 & | \ddot{x} & | b_{xx} & 0 & 0 & | \dot{x} & | k + k_{xx} & 0 & 0 & | x \\ 0 & m + m_{yy} & 0 & | \ddot{y} + | 0 & b_{yy} & 0 & | \dot{y} + | 0 & | k + k_{yy} & 0 & | y = 0 \\ 0 & 0 & m + m_{zz} & \ddot{z} & | 0 & 0 & | b_{zz} & | \dot{z} & | 0 & 0 & | k_{zz} & | z \end{vmatrix}$$
 (2)

Здесь коэффициенты:

m - масса консольного вала с диском;

 m_{xx} , m_{yy} , m_{zz} - присоединенная масса уплотнения;

 $b_{xx},\,b_{yy},\,b_{zz}$ - вязкое демпфирование среды; k - жесткость консольного вала; $k_{xx},\,k_{yy},\,k_{zz}$ - гидродинамическая жесткость уплотнения. x , y , z - перемещения центра диска на свободном конце стержня.

Масса консольного вала с диском -m и жесткость консольного вала - k определяются геометрией и свойствами материала. Присоединенная масса уплотнения m_{xx} , m_{yy} , вязкое демпфирование щелевого уплотнения b_{xx} , b_{yy} , при различных перепадах давления и гидродинамическая жесткость в кольцевых щелевых уплотнениях может быть определена по методикам, предложенным в монографии Гэша, Нордмана [2]. Вязкое демпфирование в радиальной щели определяется с учетом полученных экспериментально величин логарифмических декрементов затухания.

При построении конечно-элементной модели использовался программный комплекс AN-SYS.

2.2.2 Трехмерное поле давления в тонком слое радиальной щели

Гидродинамическая жесткость в радиальном щелевом уплотнении определяется решением усеченного уравнения Навье-Стокса. В цилиндрических координатах для двухмерного потока жидкости с учетом гипотезы тонкого слоя система уравнений имеет вид:

$$\frac{\partial U}{\partial t} + W \frac{\partial U}{\partial r} + \frac{U}{R} \frac{\partial U}{\partial \varphi} + \frac{W \cdot U}{R} + V \frac{\partial U}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial \varphi} + \frac{\partial}{\partial y} \tau_{\varphi y};$$

$$\frac{\partial W}{\partial t} + W \frac{\partial W}{\partial r} + \frac{U}{R} \frac{\partial W}{\partial \varphi} + \frac{U^{2}}{R} + V \frac{\partial W}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial r} + \frac{\partial}{\partial y} \tau_{ry}$$

$$\frac{\partial W}{\partial r} + \frac{W}{R} + \frac{1}{R} \frac{\partial U}{\partial \varphi} + \frac{\partial V}{\partial z} = 0$$
(3)

Здесь U – окружная скорость, W – радиальная.

Численная модель трехмерного течения турбулентного потока построена с использованием программного пакета ANSYS CFX. В качестве модели турбулентного потока использована « $k-\omega$ » модель второго порядка. Сложность построения трехмерной модели определяется геометрией щели. На рисунке 7 показана сетка области трехмерного течения жидкости в уплотнении. Толщина зазора радиальной щели на три порядка меньше геометрических размеров, диаметра и длины. При построении трехмерной сетки, даже для модельного уплотнения количество узлов достигает нескольких миллионов. Решение задачи требует больших вычислительных ресурсов и больших объемов оперативной памяти.

2.2.3 Результаты моделирования трехмерного потока

Программный продукт ANSYS CFX позволяет проводить расчеты гидродинамики потока с использованием методов конечного объема на не ортогональных сетках. Это позволяет получать экономные и эффективные сетки на сложной геометрии. В нашем случае сетка разбивается только на объеме жидкости в зазоре, для которого проводятся расчеты. Для параллельного зазора возможно решение плоской задачи. В этом случае существенно сокращается число узлов сетки, требуемая память, вычислительная мощность и время счета. Для перекошенной щели сетка строится из двух подобластей, которые затем стыкуются, как показано на рисунке7. Общее число узлов на перекошенной радиальной щели составило 9 903 873. Необходимая оперативная память 31,6 Гбайт. Время счета на 16 ядрах 4х узлов кластера «СКИФ Урал» составляет

порядка 4 часов. Ограничение по ядрам определяется лицензионным соглашением. На рисунках 8-10 приведены расчетные поля давлений в радиальной щели и ее сечениях.

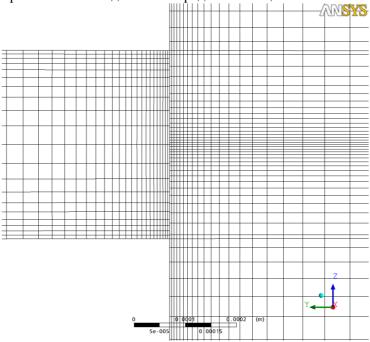


Рис. 7. Участок расчетной сетки на стыке 2х доменов – входной зоны и щелевого уплотнения

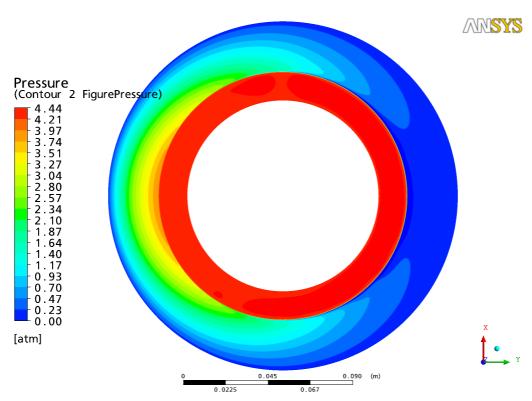


Рис. 8. Расчетное поле давления на стенке диска модельной гидропяты при перерекосе

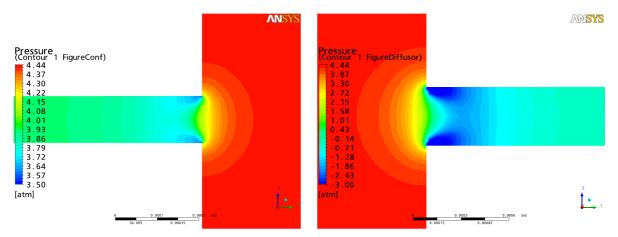


Рис. 9. Распределение давления по толщине на входном участке (слева - конфузор, справа- диффузор)

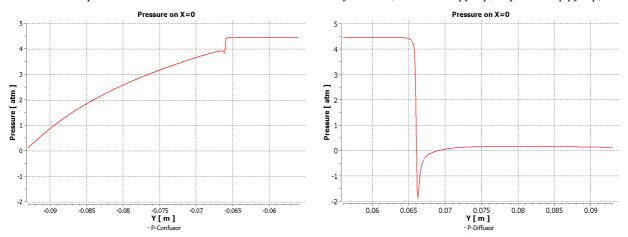


Рис. 10. Падение давления по длине щели (слева - конфузор, справа - диффузор)

2.2.4 Масштабируемость задачи по расчету гидродинамики в радиальной щели

Расчеты по моделированию трехмерного потока в щелевом уплотнении проводились на кластере "СКИФ Урал" ЮУрГУ. Была проведена серия тесовых расчетов для определения степени масштабируемости задачи. Для получения необходимого количества оперативной памяти было задействовано 4 узла кластера (конфигурация узла: 2x Intel Xeon E5472 3.0 GHz, 8ГБайт ОЗУ). Количество использованных ядер на каждом узле изменялось от 1го до 4х. Задача показала линейную масштабируемость в указанном диапазоне количества решателей СFX (рис. 11).

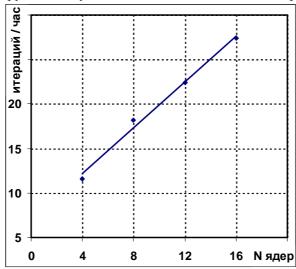


Рис. 11. Зависимость производительности вычислений от количества используемых процессорных ядер

2.2.5 Результаты моделирования динамики консольного стержня

Программный пакет ANSYS позволяет проводить модальный анализ. Для этого строится конечно-элементная модель колебательной системы. Количество узлов расчетной сетки для консольного стержня оказалось равно 120000 узлов. Граничные условия — заделка стержня (отсутствие перемещений) и свободное перемещение диска в трех взаимноперпендикулярных направлениях на противоположном конце.

Целью расчета является определение собственных частот и форм колебаний в различных средах с различным демпфированием. На воздухе в расчетах вязкое демпфирование не учитывалось. При колебаниях в воде учет демпфирования обязателен. Демпфирующие силы определялись из условий определенного экспериментально логарифмического декремента колебаний. При расчетах свободных затухающих колебаний с целью снижения времени счета использована разреженная сетка с числом узлов порядка 10000. На рисунке 12 приведены первая и вторая формы колебаний. Частота первой формы 73,9 Гц, частота второй формы – 605,85 Гц. На рисунке 13 приведена модель нагружения ротора при исследовании затухающих колебаний.

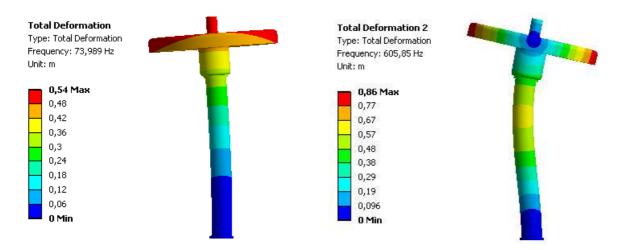


Рис. 12. Модальный анализ – первая и вторая формы колебаний

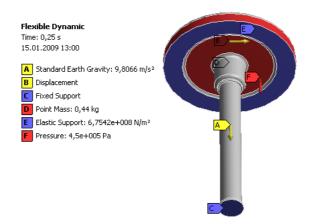
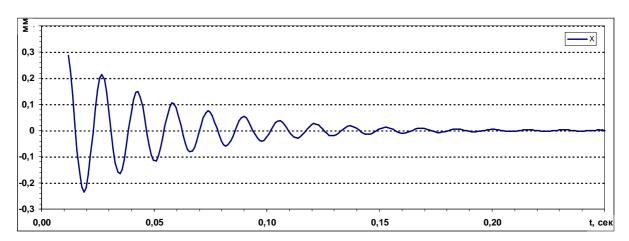
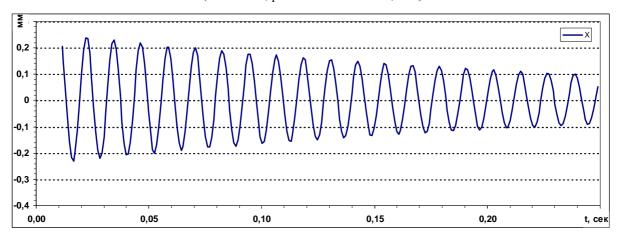
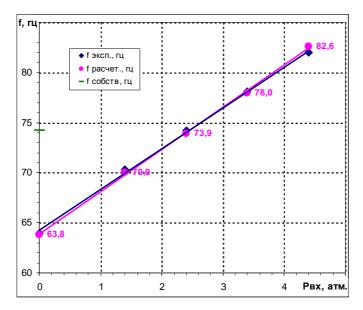




Рис. 13. Моделирование динамики гибкого вала в Ansys Workbench

Временные формы колебаний, полученные расчетным путем, для упругого ротора для случая колебаний в воде без перепада давления приведены на рис. 14 и с учетом перепада давления в щели равного 0,44 МПа на рис. 15. При отсутствии перепада давления частота первой формы колебаний равна 63,8 Гц. С увеличением перепада давления собственная частота растет. При давлении на входе в щель 0,44 МПа частота первой формы становится равной 82,6 Гц.

Рис. 14. Результаты расчета затухающих колебаний гибкого вала с учетом демпфирования водной среды (Рвх=0 атм, расчетная частота 63,8 Гц)


Рис. 15. Результаты расчета колебаний гибкого вала с учетом демпфирования водной среды. (Рвх=4,4 атм, расчетная частота 82,6 Гц)

3. Сравнение результатов численного и физического эксперимента

Интегральной оценкой точности результатов численного моделирования является сравнения расчетных данных с данными физического эксперимента. Наиболее общей характеристикой учитывающей результаты гидродинамического расчета и гармонический анализ колебательной системы являются свободные колебания системы с учетом вязкого трения среды и присоединенных масс. В качестве оценки принята зависимость первой собственной частоты колебательной системы от перепада давления в щелевом уплотнении. На рис. 16 приведены данные физического и численного эксперимента. Как видно, данные, полученные при численном моделировании, очень хорошо согласуются с результатами физического эксперимента.

5. Заключение

В работе проведено трехмерное численное моделирование турбулентного тонкого слоя жидкости в радиальной щели уплотнения при различных перепадах давления на входе в щель и различных углах перекоса. Определены поля давления в конфузорной и диффузорной областях при перекосе уплотнения. Используя расчетные поля давления, получены значения угловой гидродинамической жесткости в радиальной щели. Проведен гармонический анализ собственных частот и форм колебаний модельного ротора с учетом гидродинамических жесткостей в радиальной щели. Рассчитаны свободные затухающие колебания с учетом вязкого демпфирования в радиальной щели. Сравнительный анализ численного моделирования с результатами физического эксперимента подтвердил достоверность данных, полученных расчетом.

Рис. 16 Результаты расчета колебаний гибкого вала с учетом гидродинамической жесткости и демпфирования водной среды

Литература

- 1. Соколов Е.В. Моделирование и исследование динамических и гидродинамических процессов в центробежных насосах массоподводящих систем бумагоделательных машин, Автореферат диссертации на соискание ученой степени кандидата технических наук, С-Петербург 2008.
- 2. R. Gasch, R. Nordmann, H. Pfützner, Rotordynamik, 2. Vollständig neu bearbeitete und erweiterte Auflage Springer, 2005, 699 s.
- 3. Марцинковский В.А. Гидродинамика дросселирующих каналов. Сумы: Издательство Сумского госуниверситета, 2002, 337 с.
- 4. Марцинковский В.А. Щелевые уплотнения: теория и практика. Сумы: Издательство Сумского госуниверситета, 2005, 416 с.
- 5. Зуева Н. Уточнение гидродинамических характеристик торцового дросселя автоматического разгрузочного устройства ротора центробежного насоса // Труды 12-й Международной на-учно-технической конференции «ГЕРВИКОН-2008». Перемышль: Изд-во Кильце 2008.- Т2. С.173-180.
- 6. Зуева Р.В., Корчак А. Исследование динамики системы автоматического уравновешивания центробежных насосов с упругим элементом // Технологии XXI века.-Алушта.-2005.-Т.1-C.89-95.
- 7. Чегурко Л.Е. Разгрузочные устройства питательных насосов тепловых электростанций. М.: Энергия, 1978, 158 с.
- 8. А.С. II63178 (СССР) Устройство для исследования зависимости гидродинамических давлений в масляном слое трущихся поверхностей / Васильев В.А., Завьялов Г.А., Чегурко Л.Е., Иванова О.В. Опубликовано 1983, Бюл. №23.